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A Proof of Proposition 0

Proof. Let us first consider the choices made by the buyers who face a reserve price

r. Depending on the reserve price chosen by the seller, there are three possible kinds

of continuation games to consider:

Case I: r ≤ θ

In this case, the following lemma applies:

Lemma 1. If r ≤ θ,

• any low-type buyer bids his own valuation in equilibrium: b = θ,

• any high-type buyer randomizes his bids on
(
θ, (1− qn−1)θ+ qn−1θ

]
according to

G(b) =
q

1− q

[(
θ − θ

θ − b

) 1
n−1

− 1

]
.

The ex ante equilibrium payoff of the buyers is:

v∗r≤θ = (1− q)qn−1(θ − θ).

The seller’s expected revenue is:

R∗
r≤θ = (1− qn)θ + qnθ − n(1− q)qn−1(θ − θ).

Proof. It is clear that both types will be willing to participate. It can be easily shown

that there is no Nash equilibrium in pure strategies. It is also immediately clear

that a low-type buyer will never place a bid higher than his own valuation because

winning with such a high bid will lead to a negative payoff. But low types will not

place a bid that is lower than their valuation even if they have an opportunity to do

so. Suppose low-type buyers do place a bid r ≤ b < θ in equilirium, then one of them

could deviate to b + ϵ and guarantee winning the auction for sure if his competitors

are low types as well, hence there is a profitable deviation.

Suppose Φ(b) is the unconditional distribution of equilibrium bids for every buyer.

The expected payoff of a buyer with type θ is given by: Φn−1(b)(θ − b). Only low

types bid θ, hence Φ(θ) = q. By indifference we have:

Φn−1(b)(θ − b) = qn−1(θ − θ),

which means that Φ(b) = q
(
θ−θ

θ−b

) 1
n−1 and v∗r≤θ = (1− q)qn−1(θ − θ).
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To find the upper bound of the support we solve q
(
θ−θ

θ−b

) 1
n−1 = 1, which leads to

b = (1 − qn−1)θ + qn−1θ. Since Φ(b) is the unconditional distribution of equilibrium

bids, the actual mixed strategy of high-type buyers is given by:

G(b) ≡ Φ(b|θi = θ) =
q

1− q

[(
θ − θ

θ − b

) 1
n−1

− 1

]
.

The equilibrium is efficient, hence it leads to the total surplus given by (1−qn)θ+

qnθ. The resulting revenue of the seller is

R∗
r≤θ = (1− qn)θ + qnθ − nv∗r≤θ

= (1− qn)θ + qnθ − n(1− q)qn−1(θ − θ).

Case II: θ < r < θ

In this case, the following lemma applies:

Lemma 2. If θ < r < θ,

• any low-type buyer chooses to abstain: b = ∅,

• any high-type buyer randomizes his bids on
[
r, (1− qn−1)θ+ qn−1r

]
according to

G(b) =
q

1− q

[(
θ − r

θ − b

) 1
n−1

− 1

]
.

The ex ante equilibrium payoff of the buyers is:

v∗
θ<r<θ

= (1− q)qn−1(θ − r).

The expected revenue of the seller is:

R∗
θ<r<θ

= (1− qn)θ − n(1− q)qn−1(θ − r).

Proof. In this case, only the high-type buyers are willing to participate. It can also

be shown that there is no equilibrium in pure strategies. Hence we will be looking

for an equilibrium in mixed strategies. Suppose that a high type buyer randomizes

his bids according to the distribution function G(b). The payoff of a high type buyer

who is bidding b is given by:(
qn−1 + (n− 1)(1− q)qn−2G(b) + ...+ (1− q)n−1Gn−1(b)

)
(θ − b)

=
(
q + (1− q)G(b)

)n−1
(θ − b).
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Assuming that r is the lower bound of the support of G(b) and that G(b) has no

mass points, we get G(r) = 0. By indifference, we get for every b in the support:

(
q + (1− q)G(b)

)n−1
(θ − b) =

(
q + (1− q)G(r)

)n−1
(θ − r) = qn−1(θ − r),

which immediately gives us

G(b) =
q

1− q

[(
θ − r

θ − b

) 1
n−1

− 1

]
,

and

v∗
θ<r<θ

= (1− q)qn−1(θ − r).

To find the upper bound of the support b we solve q
1−q

[(
θ−r
θ−b

) 1
n−1 − 1

]
= 1 which

leads to b = (1− qn−1)θ + qn−1r.

Since only the high-type buyers trade with the seller, the resulting total surplus

is given by (1− qn)θ. The resulting revenue of the seller is then given by:

R∗
θ<r<θ

= (1− qn)θ − nv∗
θ<r<θ

= (1− qn)θ − n(1− q)qn−1(θ − r).

Case III: r = θ

In this case only high types are willing to participate, and they of course have no

choice but to bid b = θ in equilibrium, and the resulting revenue will be:

R∗
r=θ

= (1− qn)θ.

Setting r > θ cannot be an equilibrium strategy. Also, revenue achieved in Case

II is inferior to that achieved in Case III, so setting θ < r < θ cannot be an

equilibrium strategy either. The result is then established by directly comparing the

revenue in Case III to the revenue in Case I.
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B Solutions of equilibrium conditions

B.1 Solution of Case 1

Recall that the equilibrium conditions in Case 1 are:

v∗fse =
(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
, (1)

(1− δ)
qn−1

n
(θ − b∗) + δv∗fse = 0, (2)

v∗fse =
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
. (3)

Combining the equations (1) and (2), we get

(1− δ)
qn−1

n
(θ − b∗) + δ

(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
= 0,

which we can solve for the equilibrium value of b:

b∗ =
δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,

which we can now use to compute the payoff of each type conditional upon winning

with b∗, for a low type buyer we have:

θ − b∗ = θ −
δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) (4)

=
δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ − δq

(
1− qn

)
θ − qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)
=

−δq
(
1− qn

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) < 0;

and for a high type buyer we have:

θ − b∗ = θ −
δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) (5)

=
δq
(
1− qn

)
θ + qn

(
1− δ(1− q)n

)
θ − δq

(
1− qn

)
θ − qn

(
1− δ(1− q)n

)
θ

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)
=

qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) > 0,
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which combined with (1) gives us the resulting equilibrium payoff:

v∗fse =
(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
= (6)

=
(1− δ)(1− qn)

n(1− δ(1− q)n)
×

qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)
=

1

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) .
From (3) we have:

1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
=

1

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,
which, knowing θ − b∗ from (4), we can solve for θ − b

∗
to obtain:

θ − b
∗
=

(1− δ)qn(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) − qn(θ − b∗)

1− qn
(7)

=
(1− δ)qn(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) +
qnδq(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)
=

qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,
We can now use expression (7) to determine b

∗
:

b
∗
= θ − qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) .
B.2 Solution of Case 2

Recall that in Case 2 the equilibrium conditions are given by:

v∗fse =
(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
, (8)

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)(θ − b

∗
), (9)

v∗fse =
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
. (10)

The equilibrium condition in (8) implies that:

(1− qn)(θ − b
∗
) + qn(θ − b) =

(1− δ)(1− qn)(θ − b∗)

1− δ(1− q)n
,

which can in turn be rewritten as:

(1− qn)(θ − b
∗
) + qn(θ − b∗) =

(1− δ)(1− qn)(θ − θ)

1− δ(1− q)n
+

(1− δ)(1− qn)(θ − b)

1− δ(1− q)n
.
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Collecting terms, we get:

(1−qn)(θ−b
∗
)+

[
qn − δqn(1− q)n − (1− δ)(1− qn)

1− δ(1− q)n

]
(θ−b∗) =

(1− δ)(1− qn)(θ − θ)

1− δ(1− q)n
.

(11)

Recall that (9) implies

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) +

δ

n

[
(1− qn)(θ − b

∗
) + qn(θ − b)

]
= (1− δ)(θ − b

∗
).

This condition can be rewritten as:

δqn

n
(θ − b∗) = (1− δ)(θ − b

∗
)− (1− δ)

1− qn

n(1− q)
(θ − b

∗
)− δ

n
(1− qn)(θ − b

∗
)

= (1− δ)(θ − b
∗
)− 1− qn

n
(θ − b

∗
)

(
1− δ

1− q
+ δ

)
= (θ − b

∗
)

[
(1− δ)− 1− qn

n(1− q)
(1− δq)

]
=

[
n(1− q)(1− δ)− (1− qn)(1− δq)

]
(θ − b

∗
)

n(1− q)
. (12)

Using equations (11) and (12), we can write:

(1− qn)(θ − b
∗
) +

[
qn − δqn(1− q)n − (1− δ)(1− qn)

1− δ(1− q)n

]
(θ − b∗) =

(1− δ)(1− qn)(θ − θ)

1− δ(1− q)n
,

δqn(θ − b∗) =

[
n(1− q)(1− δ)− (1− qn)(1− δq)

]
(θ − b

∗
)

1− q
,

which can be solved for optimal payoffs θ − b
∗
and θ − b∗:

θ − b∗ = − 1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ),

θ − b
∗
=

1

D(δ)
δqn(1− qn)(1− q)(θ − θ),

where D(δ) is given by:

D(δ) = qn
(
1−δ(1−q)n

)[
n(1−q)−(1−qn)

]
+(1−qn)

[
(1−qn)(1−δq)−n(1−δ)(1−q)

]
.

The ex ante equilibrium payoff can be found from:

nv∗fse = (1− qn)(θ − b
∗
) + qn(θ − b∗)

=
qn(1− qn)(θ − θ)

D(δ)

[
δ(1− qn)(1− q)− (1− qn)(1− δq) + n(1− δ)(1− q)

]
=

qn(1− qn)(θ − θ)

D(δ)

[
(1− qn)(δ − δq − 1 + δq) + n(1− δ)(1− q)

]
=

qn(1− qn)(θ − θ)

D(δ)
(1− δ)

[
− (1− qn) + n(1− q)

]
.
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Hence the ex ante equilibrium payoff is:

v∗fse =
1

nD(δ)
(1− δ)qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ). (13)

We can now determine the payoff of the high type who wins with a low bid, i.e.

θ − b∗. Combining the expression for the ex ante equilibrium payoff in (13) and the

equilibrium condition in (8) we get

(1− δ)(1− qn)(θ − b∗)

n(1− δ(1− q)n)
=

1

nD(δ)
(1− δ)qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ),

which can be solved for θ − b∗:

θ − b∗ =
1

D(δ)
qn(1− δ(1− q)n)

[
n(1− q)− (1− qn)

]
(θ − θ).

B.3 Solution of Case 3

Recall that in Case 3 the equilibrium conditions are given by:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)(θ − b

∗
), (14)

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse = (1− δ)qn−1(θ − b∗), (15)

v∗fse =
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
. (16)

Note that conditions (14) and (15) together imply θ − b
∗
= qn−1(θ − b∗). Hence

the equilibrium payoff becomes:

v∗fse =
1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
=

1

n

[
(1− qn)(θ − b

∗
) + qn(θ − θ + θ − b∗)

]
=

1

n

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)− qn(θ − θ)

]
=

1

n

[
(1− qn)(θ − b

∗
) + q(θ − b

∗
)− qn(θ − θ)

]
=

1

n

[
(1− qn + q)(θ − b

∗
)− qn(θ − θ)

]
. (17)

The upward incentive compatibility constraint in (14) can then be written as:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δ

1

n

[
(1− qn + q)(θ − b

∗
)− qn(θ − θ)

]
= (1− δ)(θ − b

∗
).
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which can then be solved for θ − b
∗
:

θ − b
∗
=

δqn(1− q)(θ − θ)

(1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q)
. (18)

We can now introduce shorthand notation for the denominator:

D(δ) = (1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q).

The ex ante equilibrium payoff can now be calculated from (17):

nv∗fse = (1− qn + q)(θ − b
∗
)− qn(θ − θ)

= (1− qn + q)
δqn(1− q)(θ − θ)

(1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q)
− qn(θ − θ)

=
qn(θ − θ)

D(δ)

[
(1− qn + q)δ(1− q)− (1− qn)(1− δq)− δq(1− q) + n(1− δ)(1− q)

]
=

qn(θ − θ)

D(δ)

[
(1− qn)

(
δ(1− q)− (1− δq)

)
+ n(1− δ)(1− q)

]
=

(1− δ)qn(θ − θ)

D(δ)

[
n(1− q)− (1− qn)

]
=

1

D(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ).

The ex ante equilibrium payoff is then given by:

v∗fse =
1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ).

The payoff of a high type buyer who wins with the low bid can be calculated from

(18) and the fact that θ − b∗ = 1
qn−1 (θ − b

∗
), and is therefore given by:

θ − b∗ =
δq(1− q)(θ − θ)

(1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q)

=
1

D(δ)
δq(1− q)(θ − θ).

A low-type buyer payoff can be calculated from nv∗fse = (1−qn)(θ−b
∗
)+qn(θ−b∗):

qn(θ − b∗) = nv∗fse − (1− qn)(θ − b
∗
)

=
1

D(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ)− (1− qn)

1

D(δ)
δqn(1− q)(θ − θ),

which implies:

θ − b∗ =
1

D(δ)

[
(1− δ)

[
n(1− q)− (1− qn)

]
− (1− qn)δ(1− q)

]
(θ − θ)

=
1

D(δ)

[
n(1− q)(1− δ)− (1− qn)(1− δq)

]
(θ − θ)
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C Some results on the parameter regions

The parameter regions, corresponding to each case, are illustrated by Figure 1:

Figure 1: Parameter regions corresponding to Cases 1, 2, and 3. For each number of

buyers n, the respective line shows which values of q belong to Cases 1, 2, and 3.

C.1 Case 1: High expected valuation/Small number of buyers

The range of parameters, where Case 1 applies, is given by q < 1−qn

n(1−q)
. It is easy

to check that this condition can be satisfied for any q as long as n = 2 or n = 3, but

only for some q if n ≥ 4. Indeed, consider n = 2 first. In this case the condition

becomes:

2q <
1− q2

1− q
⇔ 2q < 1 + q ⇔ q < 1,

which is obviously true. If n = 3, the condition becomes:

3q <
1− q3

1− q
⇔ 3q < 1 + q + q2 ⇔ 0 < 1− 2q + q2 ⇔ 0 < (1− q)2,

which is also obviously true for any q ∈ (0, 1). If n = 4, the condition becomes:

4q <
1− q4

1− q
⇔ 4q < 1 + q + q2 + q3 ⇔ 0 < 1− 3q + q2 + q3

⇔ 0 < (1− q)(−q2 − 2q + 1) ⇔ 0 < −q2 − 2q + 1,
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which is only true for q ∈ (0,−1+
√
2). It is possible to establish that for any number

of players n ≥ 4 there will be some values of q falling into Case 1:

Proposition 1. The equation 1 − qn = nq(1 − q) has a unique solution q∗ on (0, 1)

for any n ≥ 4. Moreover for all q < q∗ it is true that q < 1−qn

n(1−q)
and vice versa.

Proof. Both sides of the equation can be divided by 1−q to obtain:
∑n−1

k=0 q
k−nq = 0,

which can again be divided by 1 − q to obtain: 1 −
∑n−2

k=1(n − 1 − k)qk = 0. Define

the function:

g(q) ≡ 1−
n−2∑
k=1

(n− 1− k)qk.

Clearly g(0) = 1, and g(1) is given by:

g(1) = 1−
n−2∑
k=1

(n− 1− k) = 1− (n− 1)(n− 2) +
n−2∑
k=1

k

= 1− (n− 1)(n− 2) +
(n− 1)(n− 2)

2
= 1− (n− 1)(n− 2)

2
=

n

2
(3− n) < 0.

hence the equation has a solution on (0, 1) for every n ≥ 4 by the Intermediate Value

Theorem.

Consider now the derivative of g(·):

g′(q) = −
n−2∑
k=1

(n− 1− k)kqk−1 < 0,

which implies that the solution q∗ is unique and that q < 1−qn

n(1−q)
for all q < q∗ and

vice versa.

The above proposition essentially shows that for every n ≥ 4 the restriction divides

the interval (0, 1) into two parts. In the left part of the segment one will find the values

of q that fall into Case 1, and in the right part of the segment one will find the values

of q that fall into Cases 2 and 3. Figure 1 provides an illustration and also suggests

that, as n goes to infinity, lower and lower values of q fall into Case 1 until there are

none left in the limit. Indeed, it is easy to see that limn→∞ nq(1−q)−(1−qn) = +∞,

implying that, for any fixed value of q, the parameter restriction does not hold for all

sufficiently high n.

12



C.2 Case 2: Medium expected valuation

The parameter restrictions of Case 2 in particular imply that:

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
. (19)

In the next proposition I establish that the set of q satisfying (19) is non-empty

for any n ≥ 4 and that there are values q that do not satisfy (19) for every n ≥ 4.

Proposition 2. The equation

(1− qn)(1− q) = qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
has a solution on (0, 1) for every n ≥ 4.

Proof. Consider the equation:

(1− qn)(1− q) = qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
⇔ (1− qn) = qn−1

(
1− (1− q)n

)[
n−

n−1∑
k=0

qk
]

⇔ (1− q)
n−1∑
k=0

qk = qn−1
(
1− (1− q)n

)
(1− q)

n−2∑
k=0

(n− 1− k)qk

⇔
n−1∑
k=0

qk = qn−1
(
1− (1− q)n

) n−2∑
k=0

(n− 1− k)qk.

and consider the function:

g(q) = qn−1
(
1− (1− q)n

) n−2∑
k=0

(n− 1− k)qk −
n−1∑
k=0

qk.

Clearly g(0) = −1 and g(1) is computed as:

g(1) =
n−2∑
k=0

(n− 1− k)1k −
n−1∑
k=0

1k

= (n− 1)2 −
n−2∑
k=0

k − n

= (n− 1)2 − (n− 1)(n− 2)

2
− n = n

n− 3

2
> 0.

The result follows by continuity of g(q).
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Recall from Figure 1 that the range of q falling into Case 2 expands as n increases.

In the next proposition I establish that any q ∈ (0, 1) will satisfy condition (19) for

all sufficiently high values of n:

Proposition 3. For all q ∈ (0, 1)

lim
n→∞

(
(1− qn)(1− q)− qn−1

(
1− (1− q)n

)[
n(1− q)− (1− qn)

])
= 1− q > 0.

Proof. Note that the expression can be rewritten as:

(1− qn)(1− q)︸ ︷︷ ︸
→1−q as n→∞

−nqn−1 (1− q)
(
1− (1− q)n

)︸ ︷︷ ︸
→1−q as n→∞

+ qn−1(1− qn)
(
1− (1− q)n

)︸ ︷︷ ︸
→0 as n→∞

.

It thus remains to check that limn→∞ nqn−1 = 0. Taking logs, I get:

log
(
nqn−1

)
= log(n) + (n− 1) log(q) ≤

√
n− 1 + (n− 1) log(q)

= (n− 1)

(
1√
n− 1

+ log(q)

)
.

Note that since log(q) is strictly negative and 1√
n−1

goes to 0 as n goes to infinity,

we have for a large enough n:

(n− 1)

(
1√
n− 1

+ log(q)

)
≤ (n− 1)

log(q)

2
.

Since log(q) < 0 we have limn→∞(n−1) log(q)
2

= −∞, but then limn→∞ log
(
nqn−1

)
=

−∞, which establishes the claim.

Figure 1 also suggests that the restriction in (19) can be satisfied for all q ≤ 1
2
.

Indeed, this claim can be shown formally:

Proposition 4. For all q ∈ (0, 1
2

]
it is true that

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
.

Proof. The parameter restriction can be rewritten as:

1− qn

1− (1− q)n
> qn−1

[
n−

n−1∑
k=0

qk
]
.

Observe that 1−qn

1−(1−q)n
≥ 1 for all q ≤ 1

2
since 1− qn ≥ 1− (1− q)n is equivalent to

1−q ≥ q. It thus suffices to show that 1 ≥ nqn−1 for all q ∈ (0, 1
2

]
. Define the function

f(q) = nqn−1 − 1. It is clearly strictly increasing in q since f ′(q) = n(n − 1)qn−2. It

thus suffices to check that the claim is true for q = 1
2
or 1 ≥ n 1

2n−1 which is equivalent

to 2n−1 ≥ n, which is true for all n ≥ 2.
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C.3 Case 3: Low expected valuation

The range of parameters, where Case 3 applies, is defined by:

q ≥ 1−
qn−1

(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
1− qn

.

Recall that it in particular implies that q ≥ 1−qn

n(1−q)
in Case 3. Recall also that q ≥

1−qn

n(1−q)
implies that n ≥ 4 because it cannot be satisfied for any q as long as n = 2

or n = 3. Combined with the result of Proposition 2, it implies that Case 3 applies

to some values of q for all n ≥ 4, and does not apply to any values of q for n = 2 or

n = 3 (see Figure 1 for an illustration).
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