Game Theory, Spring 2024
 Lecture \# 1

Daniil Larionov

This version: February 21, 2024
Click here for the latest version

1 Review of Nash equilibria

Definition 1 (Strategic form game). A strategic form game is given by:

1. Players $i \in \mathcal{I}=\{1, \ldots, I\}$,
2. Actions $a_{i} \in A_{i}$ for each player $i \in \mathcal{I}$,
3. Payoffs $u_{i}\left(a_{i}, a_{-i}\right)$ for each player $i \in \mathcal{I}$.

Example 1. Consider the following strategic form game:

\[

\]

In Example 1 we have:

1. Players: $\mathcal{I}=\{1,2\}$,
2. Actions: $A_{1}=A_{2}=\{1,2\}$,

Definition 2 (Nash equilibrium in pure strategies). An action profile ($a_{1}^{*}, \ldots, a_{I}^{*}$) is a Nash equilibrium in pure strategies if for all players $i \in \mathcal{I}$ we have

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}^{\prime}, a_{-i}^{*}\right) \forall a_{i}^{\prime} \in A_{i} .
$$

In Example $1(\mathrm{~T}, \mathrm{~T})$ and (B, B) are both Nash equilibria in pure strategies.

Example 2. Consider the following strategic form game:

\[

\]

In Example 2 there are no Nash equilibria in pure strategies, which motivates the introduction of mixed strategies.

Definition 3 (Mixed strategy). A mixed strategy σ_{i} of player i is a probability distributions over player i 's actions, $\sigma_{i} \in \Delta\left(A_{i}\right)$.

If the players play a profile of mixed strategies $\left(\sigma_{i}, \ldots, \sigma_{I}\right)$, then we can write the payoff of player i as follows:

$$
u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{a \in A}\left[\sigma_{1}\left(a_{1}\right) \times \cdots \times \sigma_{I}\left(a_{I}\right)\right] u_{i}(a)
$$

Definition 4 (Nash equilibrium in mixed strategies). A mixed strategy profile $\left(\sigma_{1}^{*}, \ldots, \sigma_{I}^{*}\right)$ is a Nash equilibrium in mixed strategies if for all players $i \in \mathcal{I}$ we have

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(a_{i}^{\prime}, \sigma_{-i}^{*}\right) \forall a_{i}^{\prime} \in A_{i} .
$$

This definition almost immediately implies the following
Claim 1. Suppose σ_{i}^{*} is an equilibrium strategy of player i. If $\sigma_{i}^{*}\left(a_{i}\right)>0$ and $\sigma_{i}^{*}\left(a_{i}^{\prime}\right)>$ 0 , then $u_{i}\left(a_{i}, \sigma_{-i}^{*}\right)=u_{i}\left(a_{i}^{\prime}, \sigma_{-i}^{*}\right)$, or, in words, if player i randomizes between a_{i} and a_{i}^{\prime}, then player i has to be indifferent between a_{i} and a_{i}^{\prime}.

We can use this indifference property to look for a mixed Nash equilibrium in Example 2. Suppose player 1 mixes according to $p T+(1-p) B$, with $0<p<1$, then player 1 has to be indifferent between T and B :

$$
\begin{aligned}
& T: 2 q+0(1-q)=2 q \\
& B: 0 q+1(1-q)=1-q
\end{aligned}
$$

Player 1 is indifferent whenever $2 q=1-q$ or $q=\frac{1}{3}$. If player 2 mixes according to $q T+(1-q) B$, then player 2 has to be indifferent between T and B :

$$
\begin{aligned}
& T: 0 p+1(1-q)=1-p \\
& B: 2 q+0(1-q)=2 p
\end{aligned}
$$

Player 2 is indifferent whenever $1-p=2 p$ or $p=\frac{1}{3}$. We conclude that $\left(\frac{1}{3} T+\frac{2}{3} B, \frac{1}{3} T+\right.$ $\left.\frac{2}{3} B\right)$ is a Nash equilibrium in mixed strategies in Example 2.

2 Bayesian games

Definition 5 (Bayesian game). A Bayesian game (game of incomplete information) is given by:

1. Players $i \in \mathcal{I}=\{1, \ldots, I\}$,
2. Actions $a_{i} \in A_{i}$ for each player $i \in \mathcal{I}$,
3. Types $\theta_{i} \in \Theta_{i}$ for each player $i \in \mathcal{I}$,
4. A probability distribution over type profiles $p\left(\theta_{i}, \theta_{-i}\right)$,
5. Payoffs $u_{i}\left(a_{i}, a_{-i}\right)$ for each player $i \in \mathcal{I}$.

Example 3. Consider the following Bayesian game and suppose that the types of player 2 are equally likely.

θ_{2}^{1}			θ_{2}^{2}		
	T	B		T	B
T	2,1	0,0	T	2,0	0,2
B	0,0	1,2	B	0,1	1,0

In Example 3 we have:

1. Players $\mathcal{I}=\{1,2\}$,
2. Actions: $A_{1}=A_{2}=\{T, B\}$,
3. Types $\Theta_{1}=\left\{\theta_{1}^{1}\right\}, \Theta_{2}=\left\{\theta_{2}^{1}, \theta_{2}^{2}\right\}$,
4. Probability distribution over type profiles: $p\left(\theta_{1}^{1}, \theta_{2}^{1}\right)=p\left(\theta_{1}^{1}, \theta_{2}^{2}\right)=\frac{1}{2}$,

Definition 6 (Bayesian strategy). A (mixed) Bayesian strategy is a function σ_{i} : $\Theta_{i} \rightarrow \Delta\left(A_{i}\right)$, which maps player i 's type into a probability distribution over player i 's actions.

Definition 7 (Bayesian Nash equilibrium). A Bayesian strategy profile ($\sigma_{1}^{*}, \ldots, \sigma_{I}^{*}$) is a Bayesian Nash equilibrium (BNE) if for all players $i \in \mathcal{I}$ we have

$$
\sum_{\theta \in \Theta} p\left(\theta_{i}, \theta_{-i}\right) u_{i}\left(\sigma_{i}^{*}\left(\theta_{i}\right), \sigma_{i}^{*}\left(\theta_{-i}\right)\right) \geq \sum_{\theta \in \Theta} p\left(\theta_{i}, \theta_{-i}\right) u_{i}\left(\sigma_{i}^{\prime}\left(\theta_{i}\right), \sigma_{i}^{*}\left(\theta_{-i}\right)\right) \forall \sigma_{i}^{\prime}
$$

Let us go back to Example 3 and identify its Bayesian Nash equilibria.

θ_{2}^{1}			θ_{2}^{2}			
$q_{1} \mathrm{~T}\left(1-q_{1}\right) \mathrm{B}$			$\begin{array}{rl} p & \mathrm{~T} \\ (1-p) & \mathrm{B} \end{array}$	$q_{2} \mathrm{~T}\left(1-q_{2}\right) \mathrm{B}$		
$p \mathrm{~T}$	2,1	0, 0		2,0	0,2	
$(1-p) \mathrm{B}$	0,0	1,2		0,1	1,0	

1. BNE in pure strategies. Observe that the best response of player 2 to T is TB , and the best response of player 2 to B is BT, hence only TB and BT could be pure equilibrium strategies for player 2. Suppose player 2 plays TB, player 1 then gets

$$
\begin{array}{ll}
\text { from } T: & \frac{1}{2} 2+\frac{1}{2} 0=1, \\
\text { from } B: & \frac{1}{2} 0+\frac{1}{2} 1=\frac{1}{2},
\end{array}
$$

which means that T is the best response to TB , implying that $(\mathrm{T}, \mathrm{TB})$ is a Bayesian Nash equilibrium. Now suppose player 2 plays BT, player 1 then gets:

$$
\begin{aligned}
& \text { from } T: \frac{1}{2} 0+\frac{1}{2} 2=1, \\
& \text { from B : } \frac{1}{2} 1+\frac{1}{2} 0=\frac{1}{2}
\end{aligned}
$$

which means that T is also the best response to BT , and thus there are no other BNE in pure strategies.
2. BNE in mixed strategies. Observe first that there is no BNE, in which player 1 plays pure. If player 1 plays pure, then the best response of player 2 is to also
play pure, hence we will be looking at equilibria, in which player one randomizes according to $p T+(1-p) B$. Player 1 then is indifferent between T and B :

$$
\begin{aligned}
T: & \frac{1}{2}\left[2 q_{1}+0\left(1-q_{1}\right)\right]+\frac{1}{2}\left[2 q_{2}+0\left(1-q_{2}\right)\right]=q_{1}+q_{2} \\
B: & \frac{1}{2}\left[0 q_{1}+1\left(1-q_{1}\right)\right]+\frac{1}{2}\left[0 q_{2}+1\left(1-q_{2}\right)\right]=1-\frac{1}{2}\left(q_{1}+q_{2}\right) .
\end{aligned}
$$

Player 1 is indifferent whenever $q_{1}+q_{2}=1-\frac{1}{2}\left(q_{1}+q_{2}\right)$, i.e. whenever $q_{1}+q_{2}=\frac{2}{3}$, which implies that at least one of the types of player 2 mixes between T and B. Consider two cases:

Case 1: suppose type θ_{2}^{1} mixes between T and B , then type θ_{2}^{1} must be indifferent between T and B :

$$
\begin{aligned}
& T: 1 p+0(1-p)=p, \\
& B: 0 p+2(1-p)=2-2 p .
\end{aligned}
$$

Type θ_{2}^{1} is indifferent whenever $p=2-2 p$, i.e. whenever $p=\frac{2}{3}$.
Case 2: suppose type θ_{2}^{2} mixes between T and B , then type θ_{2}^{2} must be indifferent between T and B :

$$
\begin{aligned}
& T: 0 p+1(1-p)=1-p \\
& B: 1 p+0(1-p)=2 p
\end{aligned}
$$

Type θ_{2}^{2} is indifferent whenever $1-p=2 p$, i.e. whenever $p=\frac{1}{3}$.
Observe that both types of player 2 cannot mix at the same time (that would require the same value of p for both types, which it is not). Suppose then that we are in Case 1, i.e. that type θ_{2}^{1} mixes between T and B , and $p=\frac{2}{3}$, i.e. player 1 plays $\frac{2}{3} T+\frac{1}{3} B$. Since type θ_{2}^{2} is not indifferent between T and B, we either have $q_{2}=0$ or $q_{2}=1$, but we must have $q_{2}=0$ to satisfy $q_{1}+q_{2}=\frac{2}{3}$. It implies that $q_{1}=\frac{2}{3}$, i.e. type θ_{2}^{1} plays $\frac{2}{3} T+\frac{1}{3} B . q_{2}=0$ means that type θ_{2}^{2} plays B, so we need to check that B is a best response for type θ_{2}^{2}. The payoff of type θ_{2}^{2} from playing B is $4 / 3$, and the payoff of type θ_{2}^{2} from playing T is $1 / 3$,
implying that B is indeed a best response to $\frac{2}{3} T+\frac{1}{3} B$. $\left[\frac{2}{3} T+\frac{1}{3} B,\left(\frac{2}{3} T+\frac{1}{3} B, B\right)\right]$ is therefore a Bayesian Nash equilibrium. The analysis of Case 2 is left for you as an exercise.

