Game Theory, Spring 2024

Lecture # 1

Daniil Larionov

This version: February 21, 2024 Click here for the latest version

1 Review of Nash equilibria

Definition 1 (Strategic form game). A strategic form game is given by:

- 1. Players $i \in \mathcal{I} = \{1, ..., I\},\$
- 2. Actions $a_i \in A_i$ for each player $i \in \mathcal{I}$,
- 3. Payoffs $u_i(a_i, a_{-i})$ for each player $i \in \mathcal{I}$.

Example 1. Consider the following strategic form game:

$$\begin{array}{ccccc}
T & B \\
T & 2,1 & 0,0 \\
B & 0,0 & 1,2
\end{array}$$

In Example 1 we have:

- 1. Players: $I = \{1, 2\},\$
- 2. Actions: $A_1 = A_2 = \{1, 2\},\$

Definition 2 (Nash equilibrium in pure strategies). An action profile (a_1^*, \ldots, a_I^*) is a Nash equilibrium in pure strategies if for all players $i \in \mathcal{I}$ we have

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i', a_{-i}^*) \ \forall a_i' \in A_i.$$

In Example 1 (T, T) and (B, B) are both Nash equilibria in pure strategies.

Example 2. Consider the following strategic form game:

$$\begin{array}{cccc}
T & B \\
T & 2,0 & 0,2 \\
B & 0,1 & 1,0
\end{array}$$

In Example 2 there are no Nash equilibria in pure strategies, which motivates the introduction of mixed strategies.

Definition 3 (Mixed strategy). A mixed strategy σ_i of player *i* is a probability distributions over player *i*'s actions, $\sigma_i \in \Delta(A_i)$.

If the players play a profile of mixed strategies $(\sigma_i, \ldots, \sigma_I)$, then we can write the payoff of player *i* as follows:

$$u_i(\sigma_i, \sigma_{-i}) = \sum_{a \in A} \left[\sigma_1(a_1) \times \cdots \times \sigma_I(a_I) \right] u_i(a)$$

Definition 4 (Nash equilibrium in mixed strategies). A mixed strategy profile $(\sigma_1^*, \ldots, \sigma_I^*)$ is a Nash equilibrium in mixed strategies if for all players $i \in \mathcal{I}$ we have

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(a_i', \sigma_{-i}^*) \ \forall a_i' \in A_i.$$

This definition almost immediately implies the following

Claim 1. Suppose σ_i^* is an equilibrium strategy of player *i*. If $\sigma_i^*(a_i) > 0$ and $\sigma_i^*(a'_i) > 0$, then $u_i(a_i, \sigma_{-i}^*) = u_i(a'_i, \sigma_{-i}^*)$, or, in words, if player *i* randomizes between a_i and a'_i , then player *i* has to be indifferent between a_i and a'_i .

We can use this indifference property to look for a mixed Nash equilibrium in Example 2. Suppose player 1 mixes according to pT + (1-p)B, with 0 , then player 1 has to be indifferent between T and B:

$$T: 2q + 0(1 - q) = 2q,$$

$$B: 0q + 1(1 - q) = 1 - q.$$

Player 1 is indifferent whenever 2q = 1 - q or $q = \frac{1}{3}$. If player 2 mixes according to qT + (1 - q)B, then player 2 has to be indifferent between T and B:

$$T: 0p + 1(1 - q) = 1 - p,$$

B: 2q + 0(1 - q) = 2p.

Player 2 is indifferent whenever 1-p = 2p or $p = \frac{1}{3}$. We conclude that $(\frac{1}{3}T + \frac{2}{3}B, \frac{1}{3}T + \frac{2}{3}B)$ is a Nash equilibrium in mixed strategies in Example 2.

2 Bayesian games

Definition 5 (**Bayesian game**). A Bayesian game (game of incomplete information) is given by:

- 1. Players $i \in \mathcal{I} = \{1, ..., I\},\$
- 2. Actions $a_i \in A_i$ for each player $i \in \mathcal{I}$,
- 3. Types $\theta_i \in \Theta_i$ for each player $i \in \mathcal{I}$,
- 4. A probability distribution over type profiles $p(\theta_i, \theta_{-i})$,
- 5. Payoffs $u_i(a_i, a_{-i})$ for each player $i \in \mathcal{I}$.

Example 3. Consider the following Bayesian game and suppose that the types of player 2 are equally likely.

$ heta_2^1$	$ heta_2^2$
T B	T B
$T \begin{bmatrix} 2, 1 & 0, 0 \end{bmatrix}$	$T \ 2,0 \ 0,2$
$B \ 0,0 \ 1,2$	B 0,1 1,0

In Example 3 we have:

- 1. Players $\mathcal{I} = \{1, 2\},\$
- 2. Actions: $A_1 = A_2 = \{T, B\},\$
- 3. Types $\Theta_1 = \{\theta_1^1\}, \Theta_2 = \{\theta_2^1, \theta_2^2\},\$
- 4. Probability distribution over type profiles: $p(\theta_1^1, \theta_2^1) = p(\theta_1^1, \theta_2^2) = \frac{1}{2}$,

Definition 6 (Bayesian strategy). A (mixed) Bayesian strategy is a function σ_i : $\Theta_i \rightarrow \Delta(A_i)$, which maps player i's type into a probability distribution over player i's actions.

Definition 7 (Bayesian Nash equilibrium). A Bayesian strategy profile $(\sigma_1^*, \ldots, \sigma_I^*)$ is a Bayesian Nash equilibrium (BNE) if for all players $i \in \mathcal{I}$ we have

$$\sum_{\theta \in \Theta} p(\theta_i, \theta_{-i}) u_i \big(\sigma_i^*(\theta_i), \sigma_i^*(\theta_{-i}) \big) \ge \sum_{\theta \in \Theta} p(\theta_i, \theta_{-i}) u_i \big(\sigma_i'(\theta_i), \sigma_i^*(\theta_{-i}) \big) \ \forall \sigma_i'.$$

Let us go back to Example 3 and identify its Bayesian Nash equilibria.

θ_2^1			$ heta_2^2$				
$q_1 \ { m T} \ (1-q_1) \ { m B}$			q_2 T $(1-q_2)$ B				
p T	2, 1	0,0		$p~{ m T}$	2, 0	0, 2	
(1-p) B	0, 0	1, 2		(1-p) B	0, 1	1,0	

1. *BNE in pure strategies.* Observe that the best response of player 2 to T is TB, and the best response of player 2 to B is BT, hence only TB and BT could be pure equilibrium strategies for player 2. Suppose player 2 plays TB, player 1 then gets

from T:
$$\frac{1}{2}2 + \frac{1}{2}0 = 1$$
,
from B: $\frac{1}{2}0 + \frac{1}{2}1 = \frac{1}{2}$,

which means that T is the best response to TB, implying that (T, TB) is a Bayesian Nash equilibrium. Now suppose player 2 plays BT, player 1 then gets:

from T :
$$\frac{1}{2}0 + \frac{1}{2}2 = 1$$
,
from B : $\frac{1}{2}1 + \frac{1}{2}0 = \frac{1}{2}$,

which means that T is also the best response to BT, and thus there are no other BNE in pure strategies.

2. *BNE in mixed strategies.* Observe first that there is no BNE, in which player 1 plays pure. If player 1 plays pure, then the best response of player 2 is to also

play pure, hence we will be looking at equilibria, in which player one randomizes according to pT + (1-p)B. Player 1 then is indifferent between T and B:

$$T: \frac{1}{2} [2q_1 + 0(1 - q_1)] + \frac{1}{2} [2q_2 + 0(1 - q_2)] = q_1 + q_2,$$

$$B: \frac{1}{2} [0q_1 + 1(1 - q_1)] + \frac{1}{2} [0q_2 + 1(1 - q_2)] = 1 - \frac{1}{2} (q_1 + q_2)$$

Player 1 is indifferent whenever $q_1 + q_2 = 1 - \frac{1}{2}(q_1 + q_2)$, i.e. whenever $q_1 + q_2 = \frac{2}{3}$, which implies that at least one of the types of player 2 mixes between T and B. Consider two cases:

Case 1: suppose type θ_2^1 mixes between T and B, then type θ_2^1 must be indifferent between T and B:

$$T: 1p + 0(1 - p) = p,$$

B: 0p + 2(1 - p) = 2 - 2p.

Type θ_2^1 is indifferent whenever p = 2 - 2p, i.e. whenever $p = \frac{2}{3}$.

Case 2: suppose type θ_2^2 mixes between T and B, then type θ_2^2 must be indifferent between T and B:

$$T: 0p + 1(1 - p) = 1 - p,$$

$$B: 1p + 0(1 - p) = 2p.$$

Type θ_2^2 is indifferent whenever 1 - p = 2p, i.e. whenever $p = \frac{1}{3}$.

Observe that both types of player 2 cannot mix at the same time (that would require the same value of p for both types, which it is not). Suppose then that we are in **Case 1**, i.e. that type θ_2^1 mixes between T and B, and $p = \frac{2}{3}$, i.e. player 1 plays $\frac{2}{3}T + \frac{1}{3}B$. Since type θ_2^2 is not indifferent between T and B, we either have $q_2 = 0$ or $q_2 = 1$, but we must have $q_2 = 0$ to satisfy $q_1 + q_2 = \frac{2}{3}$. It implies that $q_1 = \frac{2}{3}$, i.e. type θ_2^1 plays $\frac{2}{3}T + \frac{1}{3}B$. $q_2 = 0$ means that type θ_2^2 plays B, so we need to check that B is a best response for type θ_2^2 . The payoff of type θ_2^2 from playing B is 4/3, and the payoff of type θ_2^2 from playing T is 1/3, implying that *B* is indeed a best response to $\frac{2}{3}T + \frac{1}{3}B$. $\left[\frac{2}{3}T + \frac{1}{3}B, \left(\frac{2}{3}T + \frac{1}{3}B, B\right)\right]$ is therefore a Bayesian Nash equilibrium. The analysis of **Case 2** is left for you as an exercise.