Game Theory, Spring 2024
 Lecture \# 3

Daniil Larionov
This version: March 7, 2024
Click here for the latest version

1 Auctions with private values

There is a single object for sale, and I potential bidders. Bidder i assigns value V_{i} to the object. V_{i} is distributed on $[0,1]$ according to F, independently and identically across bidders. F has a continuous density f and full support. Bidder i knows her own value, but does not know the values of her competitors.

2 First-price sealed-bid auctions

In a first-price sealed-bid auction, the highest bidder wins and pays the amount she bid. We can formally define it as follows:

Definition 1 (First-price sealed-bid auction). A first-price sealed-bid auction is a Bayesian game that consists of the following:

1. Players: $\{$ Bidder $1, \ldots$, Bidder $I\}$,
2. Actions: $A_{1}=\cdots=A_{I}=\mathbb{R}_{+}$,
3. Types: $\Theta_{1}=\cdots=\Theta_{I}=[0,1]$,
4. Probability distribution over type profiles:

$$
\mathbb{P}\left[V_{1} \leq v_{1}, \ldots, V_{I} \leq v_{I}\right]=F\left(v_{1}\right) \times \cdots \times F\left(v_{I}\right),
$$

5. Payoffs:

$$
u_{i}\left(b_{i}, b_{-i} ; v_{i}\right)= \begin{cases}v_{i}-b_{i} & \text { if } b_{i}>\max _{j \neq i} b_{j} \\ \frac{1}{\# w i n}\left(v_{i}-b_{i}\right) & \text { if } b_{i}=\max _{j \neq i} b_{j} \\ 0 & \text { otherwise }\end{cases}
$$

where \#win is the number of winners in the auction.
We are going to look at symmetric Bayesian Nash equilibria of this game in pure strategies. A pure strategy is $\beta:[0,1] \rightarrow \mathbb{R}_{+}$, mapping valuations to bids. Suppose β is strictly increasing, continuosly differentiable, and $\beta(0)=0$. Suppose bidder i has valuation v_{i} and bids b_{i}. The expected utility of bidder i is then given by:

$$
\mathbb{P}\left[\text { win with } b_{i} \text { against } \beta\right]\left(v_{i}-b_{i}\right) .
$$

The winning probabilty $\mathbb{P}\left[\right.$ win with b_{i} against $\left.\beta\right]$ is equal to:

$$
\begin{aligned}
& \mathbb{P}\left[b_{i} \geq \beta\left(V_{1}\right), \ldots, b_{i} \geq \beta\left(V_{i-1}\right), b_{i} \geq \beta\left(V_{i+1}\right), \ldots b_{i} \geq \beta\left(V_{I}\right)\right] \\
& =\mathbb{P}\left[\beta^{-1}\left(b_{i}\right) \geq V_{1}, \ldots, \beta^{-1}\left(b_{i}\right) \geq V_{i-1}, \beta^{-1}\left(b_{i}\right) \geq V_{i+1}, \ldots \beta^{-1}\left(b_{i}\right) \geq V_{I}\right] \\
& =\mathbb{P}\left[V_{1} \leq \beta^{-1}\left(b_{i}\right)\right] \times \cdots \times \mathbb{P}\left[V_{i-1} \leq \beta^{-1}\left(b_{i}\right)\right] \times \mathbb{P}\left[V_{i+1} \leq \beta^{-1}\left(b_{i}\right)\right] \times \cdots \times \mathbb{P}\left[V_{I} \leq \beta^{-1}\left(b_{i}\right)\right] \\
& =\underbrace{F\left(\beta^{-1}\left(b_{i}\right)\right) \times \cdots \times F\left(\beta^{-1}\left(b_{i}\right)\right) \times F\left(\beta^{-1}\left(b_{i}\right)\right) \times \cdots \times F\left(\beta^{-1}\left(b_{i}\right)\right)}_{I-1 \text { times }} \\
& =\left[F\left(\beta^{-1}\left(b_{i}\right)\right)\right]^{I-1}
\end{aligned}
$$

Define $G(x) \equiv[F(x)]^{I-1}$, and let $g(x) \equiv G^{\prime}(x)$. We can then write down the expected utility of bidder i as follows:

$$
G\left(\beta^{-1}\left(b_{i}\right)\right)\left(v_{i}-b_{i}\right) .
$$

Taking the first-order condition with respect to b_{i}, we get:

$$
g\left(\beta^{-1}\left(b_{i}\right)\right)\left[\beta^{-1}\right]^{\prime}\left(b_{i}\right)\left(v_{i}-b_{i}\right)-G\left(\beta^{-1}\left(b_{i}\right)\right)=0 .
$$

In equilibrium, we must have $b_{i}=\beta\left(v_{i}\right)$, hence we get:

$$
\begin{aligned}
& g\left(v_{i}\right) \frac{1}{\beta^{\prime}\left(v_{i}\right)}\left(v_{i}-\beta\left(v_{i}\right)\right)-G\left(v_{i}\right)=0 \\
\Leftrightarrow & g\left(v_{i}\right) v_{i}=\beta\left(v_{i}\right) g\left(v_{i}\right)+\beta^{\prime}\left(v_{i}\right) G\left(v_{i}\right) \\
\Leftrightarrow & g\left(v_{i}\right) v_{i}=\underbrace{\beta\left(v_{i}\right) G^{\prime}\left(v_{i}\right)+\beta^{\prime}\left(v_{i}\right) G\left(v_{i}\right)}_{\text {Product rule }} \\
\Leftrightarrow & g\left(v_{i}\right) v_{i}=\left[\beta\left(v_{i}\right) G\left(v_{i}\right)\right]^{\prime} .
\end{aligned}
$$

We can therefore write:

$$
\int_{0}^{v_{i}} g(x) x d x=\int_{0}^{v_{i}}[\beta(x) G(x)]^{\prime} d x=\beta\left(v_{i}\right) G\left(v_{i}\right)-\underbrace{\beta(0) G(0)}_{=0}=\beta\left(v_{i}\right) G\left(v_{i}\right) .
$$

We now have our equilibrium candidate

$$
\beta\left(v_{i}\right)=\frac{1}{G\left(v_{i}\right)} \int_{0}^{v_{i}} x g(x) d x
$$

Recall that $g(x)=G^{\prime}(x)=\frac{\partial}{\partial x}[F(x)]^{I-1}=(I-1)[F(x)]^{I-2} f(x)$, hence we can rewrite $\beta\left(v_{i}\right)$ as follows:

$$
\beta\left(v_{i}\right)=\frac{1}{[F(x)]^{I-1}} \int_{0}^{v_{i}} x(I-1)[F(x)]^{I-2} f(x) d x
$$

Example 1. Suppose V_{i} is uniformly distributed on $[0,1]$ for each i, we then have $F(x)=x$ and $f(x)=1$. The equilibrium bidding strategy is then given by:

$$
\beta\left(v_{i}\right)=\frac{1}{v_{i}^{I-1}} \int_{0}^{v_{i}} x(I-1) x^{I-2} 1 d x=\frac{I-1}{I} v_{i} .
$$

Revenue achieved by the seller in equilibrium is given by $R^{*}=\max \left\{\beta\left(V_{1}\right), \ldots, \beta\left(V_{I}\right)\right\}$. Let $V^{(1)} \equiv \max \left\{V_{1}, \ldots, V_{I}\right\}$. The cdf of $V^{(1)}$ is given by:

$$
H(x) \equiv \mathbb{P}\left[V^{(1)} \leq x\right]=\mathbb{P}\left[V_{1} \leq x, \ldots, V_{I} \leq x\right]=[F(x)]^{I}
$$

The density of $V^{(1)}$ is then $h(x)=H^{\prime}(x)=I[F(x)]^{I-1} f(x)$. Expected revenue can then be written as:

$$
\mathbb{E} R^{*}=\int_{0}^{1} \beta(x) I[F(x)]^{I-1} f(x) d x
$$

In the uniform case, we get

$$
\mathbb{E} R^{*}=\int_{0}^{1} \frac{I-1}{I} x I x^{I-1} 1 d x=\frac{I-1}{I+1} .
$$

