Game Theory, Spring 2024

Lecture # 4

Daniil Larionov

This version: March 7, 2024 Click here for the latest version

1 Second-price sealed-bid auctions

In a second-price sealed-bid auction, the highest bidder wins and pays the secondhighest bid. We can formally define it as follows:

Definition 1 (Second-price sealed-bid auction). A second-price sealed-bid auction is a Bayesian game that consists of the following:

- 1. Players: {Bidder $1, \ldots, Bidder I$ },
- 2. Actions: $A_1 = \cdots = A_I = \mathbb{R}_+,$
- 3. Types: $\Theta_1 = \cdots = \Theta_I = [0, 1],$
- 4. Probability distribution over type profiles:

$$\mathbb{P}[V_1 \le v_1, \dots, V_I \le v_I] = F(v_1) \times \dots \times F(v_I),$$

5. Payoffs:

$$u_i(b_i, b_{-i}; v_i) = \begin{cases} v_i - \max_{j \neq i} b_j & \text{if } b_i > \max_{j \neq i} b_j, \\\\ \frac{1}{\#win} (v_i - \max_{j \neq i} b_j) & \text{if } b_i = \max_{j \neq i} b_j, \\\\ 0 & \text{otherwise,} \end{cases}$$

where #win is the number of winners in the auction.

We are going to look at symmetric Bayesian Nash equilibria of this game in pure strategies. A pure strategy is β : $[0,1] \rightarrow \mathbb{R}_+$, mapping valuations to bids. We are going to show that second-price auctions have equilibria in (weakly) dominant strategies:

Definition 2. A strategy profile $(\beta_1, \ldots, \beta_I)$ is a Bayesian Nash equilibrium in (weakly) dominant strategies, if for every bidder i and for every v_i , b_i and b_{-i} we have

$$u_i(\beta_i(v_i), b_{-i}; v_i) \ge u_i(b_i, b_{-i}; v_i).$$

We establish the following proposition:

Proposition 1. A second-price sealed-bid auction has a Bayesian Nash equilibrium in dominant strategies, in which every bidder bids her own valuation, i.e. $\beta(v_i) = v_i$.

Proof. We show first that bidding $\beta(v_i) = v_i$ weakly dominates bidding any $b_i > v_i$. Let $\overline{b}_{-i} \equiv \max_{j \neq i} b_j$ and consider the following cases:

	$\overline{b}_{-i} < v_i < b_i$	$\overline{b}_{-i} = v_i < b_i$	$v_i < \overline{b}_{-i} < b_i$	$v_i < \overline{b}_{-i} = b_i$	$v_i < b_i < \overline{b}_{-i}$
$\beta(v_i) = v_i$	i wins, and	i is one of	i loses and	i loses and	i loses and
	gets $v_i - \overline{b}_{-i}$	the winners,	gets 0	gets 0	gets 0
		gets 0			
$b_i > v_i$	i wins, and	i wins, gets 0	i wins, gets	i is one of the	i loses and
	gets $v_i - \overline{b}_{-i}$		$v_i - \overline{b}_{-i} < 0$	winners, and	gets 0
				gets $\frac{1}{\#win}(v_i -$	
				$\left \ \overline{b}_{-i} \right < 0$	

Showing that $\beta(v_i) = v_i$ weakly dominates bidding any $b_i < v_i$ is left for you as an exercise (see Exercise 1.1 in Problem Set #3).

Revenue achieved by the seller in this equilibrium is given by $R^* = V^{(2)}$, where

 $V^{(2)}$ is the second-highest value in $\{V_1, \ldots, V_I\}$. The cdf of $V^{(2)}$ is given by:

$$H(x) = \mathbb{P} \left[V^{(2)} \le x \right] = \mathbb{P} \left[V_1 \le x, V_2 \le x, \dots, V_{I-1} \le x, V_I \le x \right] \\ + \mathbb{P} \left[V_1 > x, V_2 \le x, \dots, V_{I-1} \le x, V_I \le x \right] \\ + \mathbb{P} \left[V_1 \le x, V_2 > x, \dots, V_{I-1} \le x, V_I \le x \right] \\ + \dots \\ + \mathbb{P} \left[V_1 \le x, V_2 \le x, \dots, V_{I-1} > x, V_I \le x \right] \\ + \mathbb{P} \left[V_1 \le x, V_2 \le x, \dots, V_{I-1} \le x, V_I > x \right] \\ = \left[F(x) \right]^I + I \left[F(x) \right]^{I-1} \left[1 - F(x) \right].$$

The density of $V^{(2)}$ is $h(x) = H'(x) = I(I-1)[F(x)]^{I-2}[1-F(x)]f(x)$. The expected revenue is:

$$\mathbb{E} R^* = \int_0^1 x I(I-1) \left[F(x) \right]^{I-2} \left[1 - F(x) \right] f(x) dx.$$

Example 1. Suppose V_i is uniformly distributed on [0,1] for each i, we then have F(x) = x and f(x) = 1. The equilibrium expected revenue is:

$$\mathbb{E} R^* = \int_0^1 x I(I-1) x^{I-2} [1-x] 1 dx = \frac{I-1}{I+1},$$

i.e. the same as the equilibrium expected revenue achieved by the corresponding firstprice auction, which is not just a coincidence but a consequence of the Revenue Equivalence theorem, which we will not formally prove here. The Revenue Equivalence theorem implies that any Bayesian equilibrium in strictly increasing strategies of any standard auction¹ yields the same expected revenue for the seller as long as bidders' values are independent and identically distributed.

¹An auction is standard if the highest bidder gets the object.

2 All-pay auctions

In an all-pay auction, the highest bidder wins and everybody pays their own bid. We can formally define it as follows:

Definition 3 (All-pay auction). An all-pay auction is a Bayesian game that consists of the following:

- 1. Players: {Bidder $1, \ldots, Bidder I$ },
- 2. Actions: $A_1 = \cdots = A_I = \mathbb{R}_+,$
- 3. Types: $\Theta_1 = \cdots = \Theta_I = [0, 1],$
- 4. Probability distribution over type profiles:

$$\mathbb{P}[V_1 \le v_1, \dots, V_I \le v_I] = F(v_1) \times \dots \times F(v_I),$$

5. Payoffs:

$$u_i(b_i, b_{-i}; v_i) = \begin{cases} v_i - b_i & \text{if } b_i > \max_{j \neq i} b_j, \\ \frac{1}{\#win}(v_i - b_i) & \text{if } b_i = \max_{j \neq i} b_j, \\ -b_i & \text{otherwise}, \end{cases}$$

where #win is the number of winners in the auction.

We are going to look at symmetric Bayesian Nash equilibria of this game in pure strategies. A pure strategy is $\beta : [0, 1] \to \mathbb{R}_+$, mapping valuations to bids. Suppose β is strictly increasing, continuously differentiable, and $\beta(0) = 0$. Suppose bidder *i* has valuation v_i and bids b_i . The expected utility of bidder *i* is then given by:

$$\mathbb{P}[\text{win with } b_i \text{ against } \beta] v_i - b_i.$$

The winning probability $\mathbb{P}[\text{win with } b_i \text{ against } \beta]$ is equal to $[F(\beta^{-1}(b_i))]^{I-1}$. Define $G(x) \equiv [F(x)]^{I-1}$, and let $g(x) \equiv G'(x)$. We can then write down the expected utility of bidder *i* as follows:

$$G(\beta^{-1}(b_i))v_i - b_i.$$

Taking the first-order condition with respect to b_i , we get:

$$g(\beta^{-1}(b_i))[\beta^{-1}]'(b_i)v_i - 1 = 0$$

In equilibrium, we must have $b_i = \beta(v_i)$, hence we get:

$$g(v_i)\frac{1}{\beta'(v_i)}v_i - 1 = 0,$$

which implies that

$$\beta(v_i) = \int_0^{v_i} xg(x)dx.$$

Recall that $g(x) = G'(x) = \frac{\partial}{\partial x} [F(x)]^{I-1} = (I-1) [F(x)]^{I-2} f(x)$, hence we can rewrite $\beta(v_i)$ as follows:

$$\beta(v_i) = \int_{0}^{v_i} x(I-1) \left[F(x) \right]^{I-2} f(x) dx.$$

Example 2. Suppose V_i is uniformly distributed on [0,1] for each *i*, we then have F(x) = x and f(x) = 1. The equilibrium bidding strategy is then given by:

$$\beta(v_i) = \int_{0}^{v_i} x(I-1)x^{I-2} 1 dx = \frac{I-1}{I} v_i^I.$$

Revenue achieved by the seller in equilibrium is given by $R^* = \sum_{i=1}^{I} \beta(V_i)$. Expected revenue can then be written as:

$$\mathbb{E} R^* = \mathbb{E} \sum_{i=1}^{I} V_i = I \mathbb{E} \beta(V_1) = I \int_{0}^{1} \beta(x) f(x) dx.$$

In the uniform case, we get

$$\mathbb{E} R^* = I \int_{0}^{1} \frac{I-1}{I} x^I 1 dx = \frac{I-1}{I+1}.$$