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1 Second-price sealed-bid auctions

In a second-price sealed-bid auction, the highest bidder wins and pays the second-

highest bid. We can formally define it as follows:

Definition 1 (Second-price sealed-bid auction). A second-price sealed-bid auc-

tion is a Bayesian game that consists of the following:

1. Players: {Bidder 1, . . . ,Bidder I},

2. Actions: A1 = · · · = AI = R+,

3. Types: Θ1 = · · · = ΘI = [0, 1],

4. Probability distribution over type profiles:

P
[
V1 ≤ v1, . . . , VI ≤ vI

]
= F (v1)× · · · × F (vI),

5. Payoffs:

ui(bi, b−i; vi) =


vi −maxj ̸=i bj if bi > maxj ̸=i bj,

1
#win

(vi −maxj ̸=i bj) if bi = maxj ̸=i bj,

0 otherwise,

where #win is the number of winners in the auction.
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We are going to look at symmetric Bayesian Nash equilibria of this game in pure

strategies. A pure strategy is β : [0, 1] → R+, mapping valuations to bids. We

are going to show that second-price auctions have equilibria in (weakly) dominant

strategies:

Definition 2. A strategy profile (β1, . . . , βI) is a Bayesian Nash equilibrium in (weakly)

dominant strategies, if for every bidder i and for every vi, bi and b−i we have

ui

(
βi(vi), b−i; vi

)
≥ ui(bi, b−i; vi).

We establish the following proposition:

Proposition 1. A second-price sealed-bid auction has a Bayesian Nash equilibrium

in dominant strategies, in which every bidder bids her own valuation, i.e. β(vi) = vi.

Proof. We show first that bidding β(vi) = vi weakly dominates bidding any bi > vi.

Let b−i ≡ maxj ̸=i bj and consider the following cases:

b−i < vi < bi b−i = vi < bi vi < b−i < bi vi < b−i = bi vi < bi < b−i

β(vi) = vi i wins, and

gets vi − b−i

i is one of

the winners,

gets 0

i loses and

gets 0

i loses and

gets 0

i loses and

gets 0

bi > vi i wins, and

gets vi − b−i

i wins, gets 0 i wins, gets

vi − b−i < 0

i is one of the

winners, and

gets 1
#win(vi−

b−i) < 0

i loses and

gets 0

Showing that β(vi) = vi weakly dominates bidding any bi < vi is left for you as

an exercise (see Exercise 1.1 in Problem Set #3).

Revenue achieved by the seller in this equilibrium is given by R∗ = V (2), where
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V (2) is the second-highest value in {V1, . . . , VI}. The cdf of V (2) is given by:

H(x) = P
[
V (2) ≤ x

]
=P

[
V1 ≤ x, V2 ≤ x, . . . , VI−1 ≤ x, VI ≤ x

]
+ P

[
V1 > x, V2 ≤ x, . . . , VI−1 ≤ x, VI ≤ x

]
+ P

[
V1 ≤ x, V2 > x, . . . , VI−1 ≤ x, VI ≤ x

]
+ . . .

+ P
[
V1 ≤ x, V2 ≤ x, . . . , VI−1 > x, VI ≤ x

]
+ P

[
V1 ≤ x, V2 ≤ x, . . . , VI−1 ≤ x, VI > x

]
=
[
F (x)

]I
+ I

[
F (x)

]I−1[
1− F (x)

]
.

The density of V (2) is h(x) = H ′(x) = I(I − 1)
[
F (x)

]I−2[
1 − F (x)

]
f(x). The

expected revenue is:

ER∗ =

1∫
0

xI(I − 1)
[
F (x)

]I−2[
1− F (x)

]
f(x)dx.

Example 1. Suppose Vi is uniformly distributed on [0, 1] for each i, we then have

F (x) = x and f(x) = 1. The equilibrium expected revenue is:

ER∗ =

1∫
0

xI(I − 1)xI−2
[
1− x

]
1dx =

I − 1

I + 1
,

i.e. the same as the equilibrium expected revenue achieved by the corresponding first-

price auction, which is not just a coincidence but a consequence of the Revenue Equiv-

alence theorem, which we will not formally prove here. The Revenue Equivalence

theorem implies that any Bayesian equilibrium in strictly increasing strategies of any

standard auction1 yields the same expected revenue for the seller as long as bidders’

values are independent and identically distributed.

1An auction is standard if the highest bidder gets the object.
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2 All-pay auctions

In an all-pay auction, the highest bidder wins and everybody pays their own bid.

We can formally define it as follows:

Definition 3 (All-pay auction). An all-pay auction is a Bayesian game that con-

sists of the following:

1. Players: {Bidder 1, . . . ,Bidder I},

2. Actions: A1 = · · · = AI = R+,

3. Types: Θ1 = · · · = ΘI = [0, 1],

4. Probability distribution over type profiles:

P
[
V1 ≤ v1, . . . , VI ≤ vI

]
= F (v1)× · · · × F (vI),

5. Payoffs:

ui(bi, b−i; vi) =


vi − bi if bi > maxj ̸=i bj,

1
#win

(vi − bi) if bi = maxj ̸=i bj,

−bi otherwise,

where #win is the number of winners in the auction.

We are going to look at symmetric Bayesian Nash equilibria of this game in pure

strategies. A pure strategy is β : [0, 1] → R+, mapping valuations to bids. Suppose β

is strictly increasing, continuosly differentiable, and β(0) = 0. Suppose bidder i has

valuation vi and bids bi. The expected utility of bidder i is then given by:

P
[
win with bi against β

]
vi − bi.

The winning probabilty P
[
win with bi against β

]
is equal to

[
F
(
β−1(bi)

)]I−1
. De-

fine G(x) ≡
[
F
(
x
)]I−1

, and let g(x) ≡ G′(x). We can then write down the expected

utility of bidder i as follows:

G
(
β−1(bi)

)
vi − bi.
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Taking the first-order condition with respect to bi, we get:

g
(
β−1(bi)

)[
β−1

]′
(bi)vi − 1 = 0

In equilibrium, we must have bi = β(vi), hence we get:

g(vi)
1

β′(vi)
vi − 1 = 0,

which implies that

β(vi) =

vi∫
0

xg(x)dx.

Recall that g(x) = G′(x) = ∂
∂x

[
F
(
x
)]I−1

= (I − 1)
[
F
(
x
)]I−2

f(x), hence we can

rewrite β(vi) as follows:

β(vi) =

vi∫
0

x(I − 1)
[
F
(
x
)]I−2

f(x)dx.

Example 2. Suppose Vi is uniformly distributed on [0, 1] for each i, we then have

F (x) = x and f(x) = 1. The equilibrium bidding strategy is then given by:

β(vi) =

vi∫
0

x(I − 1)xI−21dx =
I − 1

I
vIi .

Revenue achieved by the seller in equilibrium is given by R∗ =
∑I

i=1 β(Vi). Ex-

pected revenue can then be written as:

ER∗ = E
I∑

i=1

Vi = I E β(V1) = I

1∫
0

β(x)f(x)dx.

In the uniform case, we get

ER∗ = I

1∫
0

I − 1

I
xI1dx =

I − 1

I + 1
.
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