Game Theory, Spring 2024
 Lecture \# 4

Daniil Larionov

This version: March 7, 2024
Click here for the latest version

1 Second-price sealed-bid auctions

In a second-price sealed-bid auction, the highest bidder wins and pays the secondhighest bid. We can formally define it as follows:

Definition 1 (Second-price sealed-bid auction). A second-price sealed-bid auction is a Bayesian game that consists of the following:

1. Players: $\{$ Bidder $1, \ldots$, Bidder $I\}$,
2. Actions: $A_{1}=\cdots=A_{I}=\mathbb{R}_{+}$,
3. Types: $\Theta_{1}=\cdots=\Theta_{I}=[0,1]$,
4. Probability distribution over type profiles:

$$
\mathbb{P}\left[V_{1} \leq v_{1}, \ldots, V_{I} \leq v_{I}\right]=F\left(v_{1}\right) \times \cdots \times F\left(v_{I}\right)
$$

5. Payoffs:

$$
u_{i}\left(b_{i}, b_{-i} ; v_{i}\right)= \begin{cases}v_{i}-\max _{j \neq i} b_{j} & \text { if } b_{i}>\max _{j \neq i} b_{j} \\ \frac{1}{\# w i n}\left(v_{i}-\max _{j \neq i} b_{j}\right) & \text { if } b_{i}=\max _{j \neq i} b_{j} \\ 0 & \text { otherwise }\end{cases}
$$

where \#win is the number of winners in the auction.

We are going to look at symmetric Bayesian Nash equilibria of this game in pure strategies. A pure strategy is $\beta:[0,1] \rightarrow \mathbb{R}_{+}$, mapping valuations to bids. We are going to show that second-price auctions have equilibria in (weakly) dominant strategies:

Definition 2. A strategy profile $\left(\beta_{1}, \ldots, \beta_{I}\right)$ is a Bayesian Nash equilibrium in (weakly) dominant strategies, if for every bidder i and for every v_{i}, b_{i} and b_{-i} we have

$$
u_{i}\left(\beta_{i}\left(v_{i}\right), b_{-i} ; v_{i}\right) \geq u_{i}\left(b_{i}, b_{-i} ; v_{i}\right)
$$

We establish the following proposition:
Proposition 1. A second-price sealed-bid auction has a Bayesian Nash equilibrium in dominant strategies, in which every bidder bids her own valuation, i.e. $\beta\left(v_{i}\right)=v_{i}$.

Proof. We show first that bidding $\beta\left(v_{i}\right)=v_{i}$ weakly dominates bidding any $b_{i}>v_{i}$. Let $\bar{b}_{-i} \equiv \max _{j \neq i} b_{j}$ and consider the following cases:

	$\bar{b}_{-i}<v_{i}<b_{i}$	$\bar{b}_{-i}=v_{i}<b_{i}$	$v_{i}<\bar{b}_{-i}<b_{i}$	$v_{i}<\bar{b}_{-i}=b_{i}$	$v_{i}<b_{i}<\bar{b}_{-i}$
$\beta\left(v_{i}\right)=v_{i}$	i wins, and				
gets $v_{i}-\bar{b}_{-i}$	i is one of the winners, gets 0	i loses and gets 0	i loses and gets 0	i loses and gets 0	
$b_{i}>v_{i}$	i wins, and				
gets $v_{i}-\bar{b}_{-i}$	i wins, gets 0	i wins, gets			
$v_{i}-\bar{b}_{-i}<0$	i is one of the winners, and gets $\frac{1}{\# w i n}\left(v_{i}-\right.$ $\left.\bar{b}_{-i}\right)<0$	i loses and gets 0			

Showing that $\beta\left(v_{i}\right)=v_{i}$ weakly dominates bidding any $b_{i}<v_{i}$ is left for you as an exercise (see Exercise 1.1 in Problem Set \#3).

Revenue achieved by the seller in this equilibrium is given by $R^{*}=V^{(2)}$, where
$V^{(2)}$ is the second-highest value in $\left\{V_{1}, \ldots, V_{I}\right\}$. The cdf of $V^{(2)}$ is given by:

$$
\begin{aligned}
H(x)=\mathbb{P}\left[V^{(2)} \leq x\right]= & \mathbb{P}\left[V_{1} \leq x, V_{2} \leq x, \ldots, V_{I-1} \leq x, V_{I} \leq x\right] \\
& +\mathbb{P}\left[V_{1}>x, V_{2} \leq x, \ldots, V_{I-1} \leq x, V_{I} \leq x\right] \\
& +\mathbb{P}\left[V_{1} \leq x, V_{2}>x, \ldots, V_{I-1} \leq x, V_{I} \leq x\right] \\
& +\ldots \\
& +\mathbb{P}\left[V_{1} \leq x, V_{2} \leq x, \ldots, V_{I-1}>x, V_{I} \leq x\right] \\
& +\mathbb{P}\left[V_{1} \leq x, V_{2} \leq x, \ldots, V_{I-1} \leq x, V_{I}>x\right] \\
= & {[F(x)]^{I}+I[F(x)]^{I-1}[1-F(x)] . }
\end{aligned}
$$

The density of $V^{(2)}$ is $h(x)=H^{\prime}(x)=I(I-1)[F(x)]^{I-2}[1-F(x)] f(x)$. The expected revenue is:

$$
\mathbb{E} R^{*}=\int_{0}^{1} x I(I-1)[F(x)]^{I-2}[1-F(x)] f(x) d x
$$

Example 1. Suppose V_{i} is uniformly distributed on $[0,1]$ for each i, we then have $F(x)=x$ and $f(x)=1$. The equilibrium expected revenue is:

$$
\mathbb{E} R^{*}=\int_{0}^{1} x I(I-1) x^{I-2}[1-x] 1 d x=\frac{I-1}{I+1},
$$

i.e. the same as the equilibrium expected revenue achieved by the corresponding firstprice auction, which is not just a coincidence but a consequence of the Revenue Equivalence theorem, which we will not formally prove here. The Revenue Equivalence theorem implies that any Bayesian equilibrium in strictly increasing strategies of any standard auction ${ }^{1}$ yields the same expected revenue for the seller as long as bidders' values are independent and identically distributed.

[^0]
2 All-pay auctions

In an all-pay auction, the highest bidder wins and everybody pays their own bid. We can formally define it as follows:

Definition 3 (All-pay auction). An all-pay auction is a Bayesian game that consists of the following:

1. Players: $\{$ Bidder $1, \ldots$, Bidder $I\}$,
2. Actions: $A_{1}=\cdots=A_{I}=\mathbb{R}_{+}$,
3. Types: $\Theta_{1}=\cdots=\Theta_{I}=[0,1]$,
4. Probability distribution over type profiles:

$$
\mathbb{P}\left[V_{1} \leq v_{1}, \ldots, V_{I} \leq v_{I}\right]=F\left(v_{1}\right) \times \cdots \times F\left(v_{I}\right),
$$

5. Payoffs:

$$
u_{i}\left(b_{i}, b_{-i} ; v_{i}\right)= \begin{cases}v_{i}-b_{i} & \text { if } b_{i}>\max _{j \neq i} b_{j} \\ \frac{1}{\# w i n}\left(v_{i}-b_{i}\right) & \text { if } b_{i}=\max _{j \neq i} b_{j} \\ -b_{i} & \text { otherwise }\end{cases}
$$

where $\#$ win is the number of winners in the auction.
We are going to look at symmetric Bayesian Nash equilibria of this game in pure strategies. A pure strategy is $\beta:[0,1] \rightarrow \mathbb{R}_{+}$, mapping valuations to bids. Suppose β is strictly increasing, continuosly differentiable, and $\beta(0)=0$. Suppose bidder i has valuation v_{i} and bids b_{i}. The expected utility of bidder i is then given by:

$$
\mathbb{P}\left[\text { win with } b_{i} \text { against } \beta\right] v_{i}-b_{i} \text {. }
$$

The winning probabilty $\mathbb{P}\left[\right.$ win with b_{i} against $\left.\beta\right]$ is equal to $\left[F\left(\beta^{-1}\left(b_{i}\right)\right)\right]^{I-1}$. Define $G(x) \equiv[F(x)]^{I-1}$, and let $g(x) \equiv G^{\prime}(x)$. We can then write down the expected utility of bidder i as follows:

$$
G\left(\beta^{-1}\left(b_{i}\right)\right) v_{i}-b_{i} .
$$

Taking the first-order condition with respect to b_{i}, we get:

$$
g\left(\beta^{-1}\left(b_{i}\right)\right)\left[\beta^{-1}\right]^{\prime}\left(b_{i}\right) v_{i}-1=0
$$

In equilibrium, we must have $b_{i}=\beta\left(v_{i}\right)$, hence we get:

$$
g\left(v_{i}\right) \frac{1}{\beta^{\prime}\left(v_{i}\right)} v_{i}-1=0
$$

which implies that

$$
\beta\left(v_{i}\right)=\int_{0}^{v_{i}} x g(x) d x
$$

Recall that $g(x)=G^{\prime}(x)=\frac{\partial}{\partial x}[F(x)]^{I-1}=(I-1)[F(x)]^{I-2} f(x)$, hence we can rewrite $\beta\left(v_{i}\right)$ as follows:

$$
\beta\left(v_{i}\right)=\int_{0}^{v_{i}} x(I-1)[F(x)]^{I-2} f(x) d x
$$

Example 2. Suppose V_{i} is uniformly distributed on $[0,1]$ for each i, we then have $F(x)=x$ and $f(x)=1$. The equilibrium bidding strategy is then given by:

$$
\beta\left(v_{i}\right)=\int_{0}^{v_{i}} x(I-1) x^{I-2} 1 d x=\frac{I-1}{I} v_{i}^{I} .
$$

Revenue achieved by the seller in equilibrium is given by $R^{*}=\sum_{i=1}^{I} \beta\left(V_{i}\right)$. Expected revenue can then be written as:

$$
\mathbb{E} R^{*}=\mathbb{E} \sum_{i=1}^{I} V_{i}=I \mathbb{E} \beta\left(V_{1}\right)=I \int_{0}^{1} \beta(x) f(x) d x
$$

In the uniform case, we get

$$
\mathbb{E} R^{*}=I \int_{0}^{1} \frac{I-1}{I} x^{I} 1 d x=\frac{I-1}{I+1}
$$

[^0]: ${ }^{1}$ An auction is standard if the highest bidder gets the object.

