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1 Second-price sealed-bid auctions

In a second-price sealed-bid auction, the highest bidder wins and pays the second-

highest bid. We can formally define it as follows:

Definition 1 (Second-price sealed-bid auction). A second-price sealed-bid auc-

tion is a Bayesian game that consists of the following:

1. Players: {Bidder 1,...,Bidder I},

2. Actions: Ay =---=A; =Ry,

3. Types: ©; =---=0; =10,1],

4. Probability distribution over type profiles:

]P)[‘/lgvly"'a‘/lgvl] :F(Ul)xn.XF(UI)a

5. Payoffs:
¢
Vi — MaX;; bj if b; > maxX;-; bj,
uz(bZ7 b—za Ui) - m(vz — InaX;+; b]) if bz = maxX;-; bj,
0 otherwise,

\

where #win is the number of winners in the auction.
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We are going to look at symmetric Bayesian Nash equilibria of this game in pure

strategies. A pure strategy is 8 : [0,1] — Ry, mapping valuations to bids. We

are going to show that second-price auctions have equilibria in (weakly) dominant

strategies:

Definition 2. A strategy profile (1, . .

., B1) is a Bayesian Nash equilibrium in (weakly)

dominant strategies, if for every bidder v and for every v;, b; and b_; we have

wi (Bi(vi), boi;vi) > wi(bi, b_i; vy).

We establish the following proposition:

Proposition 1. A second-price sealed-bid auction has a Bayesian Nash equilibrium

in dominant strategies, in which every bidder bids her own valuation, i.e. B(v;) = v;.

Proof. We show first that bidding §(v;) = v; weakly dominates bidding any b; > v;.

Let b_; = max;x; b; and consider the following cases:

by <wv;<bj | boj=v;<bj|vi<b_j<b|vi<b_=~ v; < b; < b_;
B(vi) =wv; | i wins, and | i is one of | i loses and | i loses and |¢ loses and
gets v; — b_; | the winners, | gets 0 gets 0 gets 0
gets 0
b; > v; i wins, and | ¢ wins, gets 0 | ¢ wins, gets | ¢ is one of the | ¢ loses and

gets v; — E,i

Ui_57i<0

winners, and
gets #zim (v; —
B—i) <0

gets 0

Showing that §(v;) = v; weakly dominates bidding any b; < v; is left for you as

an exercise (see Exercise 1.1 in Problem Set #3).

Revenue achieved by the seller in this equilibrium is given by R* =

]

V@ where




V@ is the second-highest value in {V4,...,V;}. The cdf of V? is given by:

Haz)=P[VP <z] =PV, <z, <wa,...,Vi_y <2, V; < 7]
+P[Vi>a,Vo<ua,...,Vio1 <,V < 1
+PVi<a,Vo>ua,... Vi <,V < 1]
+...
+PVi<a,Vo<uz,...,Vi_y >,V < 1
+PVi<a,Vo<a,...,Vioy <,V > 1]

—[F)]" + I[F(2)]"'[1 - F(z)].

The density of V® is h(z) = H'(z) = I(I — 1)[F($)]1_2[

1 — F(z)] f(z). The

expected revenue is:

ER* = /w[([ —)[F@)] 71 - F(2)] f(2)da.

Example 1. Suppose V; is uniformly distributed on [0,1] for each i, we then have

F(z) =x and f(x) = 1. The equilibrium ezpected revenue is:

1
I—-1
ER* = [ zI(I —1)z"*[1 — z|lde = ——
/:B( K [ x} x i
0

i.e. the same as the equilibrium expected revenue achieved by the corresponding first-
price auction, which is not just a coincidence but a consequence of the Revenue Equiv-
alence theorem, which we will not formally prove here. The Revenue Equivalence
theorem implies that any Bayesian equilibrium in strictly increasing strategies of any
standard auction® yields the same expected revenue for the seller as long as bidders’

values are independent and identically distributed.

LAn auction is standard if the highest bidder gets the object.



2 All-pay auctions

In an all-pay auction, the highest bidder wins and everybody pays their own bid.

We can formally define it as follows:

Definition 3 (All-pay auction). An all-pay auction is a Bayesian game that con-

sists of the following:

1. Players: {Bidder 1,...,Bidder I},

2. Actions: Ay =---=A; =Ry,

3. Types: ©; =---=0; =10,1],

4. Probability distribution over type profiles:

PVi <wvr,...,Vi <o = Fvy) x -+ x F(uy),

5. Payoffs:
(
v; — bz if bl > MmaX;-4; ij
u;(biy b_i;v;) = (Vi = bi)  if b = max;; b;
—b; otherwise,
\

where #win is the number of winners in the auction.

We are going to look at symmetric Bayesian Nash equilibria of this game in pure
strategies. A pure strategy is 5 : [0, 1] — R, mapping valuations to bids. Suppose
is strictly increasing, continuosly differentiable, and (0) = 0. Suppose bidder i has
valuation v; and bids b;. The expected utility of bidder ¢ is then given by:

P[Win with b; against B} v; — b;.

The winning probabilty P[Win with b; against ﬁ} is equal to [F (ﬁfl(bi))]kl. De-
fine G(z) = [F (x)]l_l, and let g(x) = G'(x). We can then write down the expected
utility of bidder i as follows:

G(B_l(bz))l}l - bz



Taking the first-order condition with respect to b;, we get:

g(B71 ) [B7) (bi)vi —1=0

In equilibrium, we must have b; = 5(v;), hence we get:
(v;) L 1=0
9(vi)z—v; — 1 =0,
B'(v;)

which implies that

Recall that g(z) = G'(z) = 2 [F(x)]l_l =(I-1) [F(x)}l_zf(x), hence we can

rewrite [3(v;) as follows:

Example 2. Suppose V; is uniformly distributed on [0,1] for each i, we then have
F(z) =x and f(x) = 1. The equilibrium bidding strategy is then given by:

Bv;) = /w([— 1)xl’21da: = ! ; 11}{.

0

Revenue achieved by the seller in equilibrium is given by R* = 25:1 B(V;). Ex-

pected revenue can then be written as:

1

ER =B Vi=TESVI) =1 [ 5(o)f(a)do.

0

In the uniform case, we get
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