Game Theory, Spring 2024
 Lecture \# 5

Daniil Larionov

This version: April 9, 2024
Click here for the latest version

1 Extensive-form games: examples

1.1 Perfect information without exogenous uncertainty

Example 1. Consider the following extensive-form game:

To formally define the extensive-form game in Example 1, we need to specify the set of players, the set of histories of play, specifying which player moves at each nonterminal history, and the payoffs achieved by the players at each terminal history. The formal definition is as follows:

Definition 1. The extensive-form game in Example 1 consists of the following:

1. Players: $\mathcal{N}=\{1,2\}$.
2. Histories: $\mathcal{H}=\{\overbrace{\varnothing}^{\text {initial }}, U, D, \overbrace{U L, U R, D L, D R}^{\text {terminal }}\}$ histories is the set of all histories; $\mathcal{Z}=$ $\{U L, U R, D L, D R\}$ is the set of terminal histories.
3. Player function $\mathscr{P}: \mathcal{H} \backslash \mathcal{Z} \rightarrow \mathcal{N}$, which maps non-terminal histories to the set of players: $\mathscr{P}(\varnothing)=1$ and $\mathscr{P}(U)=\mathscr{P}(D)=2$.
4. Payoff functions $u_{i}: \mathcal{Z} \rightarrow \mathbb{R}$, which map terminal histories to payoffs for each player $i \in \mathcal{N}$ (see the game tree for the payoffs).

1.2 Imperfect information without exogenous uncertainty

Example 2. Consider the following extensive-form game:

To formally define the extensive-form game in Example 2, we also need to specify the set of players, the set of histories of play, specifying which player moves at each non-terminal history, and the payoffs achieved by the players at each terminal history. Additionally, we need to specify information sets, which are subsets of histories that the players cannot distinguish. The formal definition of Example 2 is as follows:

Definition 2. The extensive-form game in Example 2 consists of the following:

1. Players: $\mathcal{N}=\{1,2,3\}$.
2. Histories: the set of all histories is given by

$$
\mathcal{H}=\left\{\varnothing, L_{1}, M_{1}, R_{1}, M_{1} L_{2}, M_{1} R_{2}, R_{1} L_{2}, R_{1} R_{2}, M_{1} R_{2} L_{3}, M_{1} R_{2} R_{3}, R_{1} L_{2} L_{3}, R_{1} L_{2} R_{3}\right\} .
$$

The set of terminal histories is given by

$$
\mathcal{Z}=\left\{L_{1}, M_{1} L_{2}, R_{1} R_{2}, M_{1} R_{2} L_{3}, M_{1} R_{2} R_{3}, R_{1} L_{2} L_{3}, R_{1} L_{2} R_{3}\right\} .
$$

3. Player function $\mathscr{P}: \mathcal{H} \backslash \mathcal{Z} \rightarrow \mathcal{N}$, which maps non-terminal histories to the set of players: $\mathscr{P}(\varnothing)=1 ; \mathscr{P}\left(M_{1}\right)=\mathscr{P}\left(R_{1}\right)=2$ and $\mathscr{P}\left(M_{1} R_{2}\right)=\mathscr{P}\left(R_{1} L_{2}\right)=3$.
4. Collections of information sets for each player: $\mathcal{I}_{1}=\{\{\varnothing\}\}, \mathcal{I}_{2}=\left\{\left\{M_{1}, R_{1}\right\}\right\}$, and $\mathcal{I}_{3}=\left\{\left\{M_{1} R_{2}, R_{1} L_{2}\right\}\right\}$.
5. Payoff functions $u_{i}: \mathcal{Z} \rightarrow \mathbb{R}$, which map terminal histories to payoffs for each player $i \in \mathcal{N}$ (see the game tree for the payoffs).

Remark 1. We can also define information sets for games of perfect information. In games of perfect information, each information set consists of a single history. In Example 1 we have $\mathcal{I}_{1}=\{\{\varnothing\}\}$ and $\mathcal{I}_{2}=\{\{U\},\{D\}\}$.

2 Strategies and equilibria

Definition 3. A pure strategy in an extensive-form game is a function that maps information sets to actions, i.e. $\sigma_{i}: I_{i} \mapsto \sigma_{i}\left(I_{i}\right) \in A\left(I_{i}\right)$, where $A\left(I_{i}\right)$ is the set of actions available to player i in information set I_{i}.

In Example 1, the set of pure strategies of player 1 is $S_{i}=\{U, D\}$, the set of pure strategies of player 2 is $S_{2}=\{L L, L R, R L, R R\}$. In Example 2, the set of pure strategies of player 1 is $S_{1}=\left\{L_{1}, M_{1}, R_{1}\right\}$, the set of pure strategies of player 2 is $S_{2}=\left\{L_{2}, R_{2}\right\}$, and the set of pure strategies of player 3 is $S_{3}=\left\{L_{3}, R_{3}\right\}$.

2.1 Strategic form and Nash equilibria

Having defined the strategies, we can rewrite Examples 1 and 2 in strategic form and look for their Nash equilibria in pure strategies. The strategic form of the game in Example 1 is given by the following payoff table:

	$L L$		$L R$	$R L$
$R R$				
U	2,1	2,1	0,0	0,0
D	$-1,1$	3,2	$-1,1$	3,2

$(U, L L),(D, L R)$, and $(D, R R)$ are pure Nash equilibria of Example 1.
The strategic form of the game in Example 2 is given by the following payoff table:

L_{1}			M_{1}			R_{1}		
	L_{3}	R_{3}		L_{3}	R_{3}		L_{3}	R_{3}
L_{2}	2, 0,0	2, 0,0	L_{2}	3, 2, 0	3, 2, 0	L_{2}	0, 1, 1	0, 1, 0
R_{2}	2,0,0	2, 0,0	R_{2}	0, 1, 3	1,4,0	R_{2}	1,0,0	1, 0,0

$\left(L_{1}, R_{2}, L_{3}\right),\left(L_{1}, R_{2}, R_{3}\right)$, and $\left(M_{1}, L_{2}, L_{3}\right)$ are pure Nash equilibria of Example 2.

2.2 Subgame-perfect Nash equilibria

We are motivated by the fact that not all Nash equilibria are plausible predictions of the actual play in extensive-form games. Indeed, consider Example 1: if player 1 has played U, it does not make sense for player 2 to play R since L gives player 2 a higher payoff, likewise if player 1 has played D, it does not make sense for player 2 to play L because R gives player 2 a higher payoff. Hence the only plausible equilibrium here is $(D, L R)$. To formalize this argument, we introduce the notions of a subgame and a subgame-perfect Nash equilibrium:

Definition 4 (Subgame). Subgame is a part of an extensive-form game that satisfies the following conditions:

1. The initial node of the subgame is the only node in its information set.
2. If a node belongs to the subgame, then so do its successors.
3. If a node from an information set belongs to the subgame, then so do all nodes in this information set.

Definition 5 (Subgame-perfect Nash equilibrium). A strategy profile is a subgameperfect Nash equilibrium if it induces a Nash equilibrium in every subgame.

In Example 1, there are 3 subgames: the whole game and 2 proper subgames:

U-subgame	D-subgame
Player 2	Player 2
$(2,1)$	$(0,0)$
$(-1,1)$	$(3,2)$

$(D, L R)$ is the only subgame-perfect Nash equilibrium in Example 1.

2.3 Weak perfect Bayesian equilibria

Consider now Example 2. The only subgame in Example 2 is the whole game, hence all of its Nash equilibria are subgame-perfect. We will however argue that not all of them are plausible predictions of the actual play. To see that, let us introduce a belief system: let us suppose that player 3 believes that she is at history $M_{1} R_{2}$ with probability μ_{3} and at history $R_{1} L_{2}$ with probability $1-\mu_{3}$. The expected payoffs of player 3 are then given by:

$$
\begin{aligned}
L_{3} & : 3 \mu_{3}+1\left(1-\mu_{3}\right)=2 \mu_{3}+1 \\
R_{3}: & 0 \mu_{3}+0\left(1-\mu_{3}\right)=0
\end{aligned}
$$

therefore for any belief μ_{3} it is optimal for player 3 to choose L_{3}.
Suppose further that player 2 believes that she is at history M_{1} with probability μ_{2} and at history R_{1} with probability $1-\mu_{2}$. Player 2 knows that player 3 will choose L_{3}, hence the expected payoffs of player 2 are given by:

$$
\begin{aligned}
& L_{2}: 2 \mu_{2}+1\left(1-\mu_{2}\right)=\mu_{2}+1 \\
& R_{2}: 1 \mu_{2}+0\left(1-\mu_{2}\right)=\mu_{2}
\end{aligned}
$$

therefore for any belief μ_{2} it is optimal for player 2 to choose L_{2}.
Knowing that players 2 and 3 will choose L_{2} and L_{3} respectively, player 1 will find it optimal to choose M_{1}, and hence $\left(M_{1}, L_{2}, L_{3}\right)$ is the only plausible equilibrium. To formalize this idea, we introduce the notion of a weak perfect Bayesian equilibrium.

Definition 6 (Weak perfect Bayesian equilibrium). A strategy profile σ and a belief system μ is a weak perfect Bayesian equilibrium if

1. σ is sequentially rational given μ, i.e. at every information set each player maximizes her expected utility given her beliefs.
2. For every information set reached with positive probability given σ, the beliefs at this information set are derived via Bayes rule.

In Example 2, if the players play $\left(M_{1}, L_{2}, L_{3}\right)$, the information set of player 2 is reached with probability 1 , hence we must have $\mu_{2}^{*}=1$, but the information set of player 3 is reached with probability 0 , hence we can choose any μ_{3}^{*} that makes it optimal for player 3 to play L_{3}. In our example, any $\mu_{3}^{*} \in[0,1]$ happens to work. Since we have established above that playing $\left(M_{1}, L_{2}, L_{3}\right)$ is sequentially rational given $\mu_{2}^{*}=1$ and $\mu_{3}^{*} \in[0,1]$, we conclude that $\left(\left(M_{1}, L_{2}, L_{3}\right) ; \mu_{2}^{*}=1, \mu_{3}^{*} \in[0,1]\right)$ are weak perfect Bayesian equilibria with $\left(M_{1}, L_{2}, L_{3}\right)$ being the unique weak perfect Bayesian equilibrium strategy profile.

2.4 Some weak perfect Bayesian equilibria are not subgame-perfect

Example 2 illustrates how some subgame-perfect equilibria are not weak perfect Bayesian. In the next example, we will show that some weak perfect Bayesian equilibria are not subgame-perfect.

Example 3. Consider the following extensive-form game:

The formal definition of the game in Example 3 is as follows:

Definition 7. The extensive-form game in Example 3 consists of the following:

1. Players: $\mathcal{N}=\{1,2,3\}$.
2. Histories: $\mathcal{H}=\{\varnothing, L, R, R T, R B, R T \ell, R T r, R B \ell, R B r\}$,

Terminal histories: $\mathcal{Z}=\{L, R T \ell, R T r, R B \ell, R B r\}$.
3. Player function: $\mathscr{P}(\varnothing)=1, \mathscr{P}(R)=2, \mathscr{P}(R T)=\mathscr{P}(R B)=3$.
4. Collections of information sets: $\mathcal{I}_{1}=\{\{\varnothing\}\}, \mathcal{I}_{2}=\{\{R\}\}$, and $\mathcal{I}_{3}=\{\{R T, R B\}\}$.
5. Payoff functions $u_{i}: \mathcal{Z} \rightarrow \mathbb{R}$ (see the game tree for the payoffs).

2.4.1 Subgame-perfect Nash equilibria

Let us first look at the subgame-perfect Nash equilibria of Example 3. This game has 2 subgames: the whole game and the following proper subgame:

The strategic form of this proper subgame is given by

	ℓ	r
	r	
	$0,1,2$	$0,1,1$
B	$1,2,1$	$3,3,3$

The unique Nash equilibrium in this subgame is (B, r), and therefore (R, B, r) is the unique subgame-perfect Nash equilibrium in the whole game.

2.4.2 Weak perfect Bayesian equilibria

To find weak perfect Bayesian equilibria, let us assume that Player 3 believes that she is at history $R T$ with probability μ and at history $R B$ with probability $1-\mu$. The expected payoffs of Player 3 are then given by:

$$
\begin{aligned}
& \ell: 2 \mu+1(1-\mu)=\mu+1, \\
& r: 1 \mu+3(1-\mu)=3-2 \mu .
\end{aligned}
$$

Player 3 will choose ℓ when $\mu+1 \geq 3-2 \mu$ or $\mu \geq \frac{2}{3}$, and will choose r otherwise. We therefore distinguish two cases.

Case 1: Player 3 chooses ℓ, then $\mu \geq \frac{2}{3}$. Knowing that, player 2 will choose B. Player 1 will then choose L. The information set of Player 3 is reached with probability 0 given (L, B, ℓ), hence $\left((L, B, \ell) ; \mu^{*} \in\left[\frac{2}{3}, 1\right]\right)$ are all weak perfect Bayesian equilibria.

Case 2: Player 3 chooses r, then $\mu \leq \frac{2}{3}$. Knowing that, player 2 will choose B. Player 1 will then choose R. The information set of player 3 is reached with probability 1 given (R, B, r), hence $\mu^{*}=0$ and $\left((R, B, r) ; \mu^{*}=0\right)$ is a weak perfect Bayesian equilibrium.

