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1 Mixed and behavior strategies

Example 4. Consider the following extensive-form game:

Player 1

Player 2

(0, 0)

ℓ

(3, 6)

r

A

(3, 6)

ℓ

(0, 0)

r

B

L

(1, 1)

R

Player 1

Recall that a pure strategy is a function σi : Ii 7→ σi(Ii) ∈ A(Ii) that maps an

information set to an action available in this information set. In Example 4, the set of

pure strategies for player 1 is S1 = {Lℓ, Lr,Rℓ,Rr}, where Lℓ stands for σ1

(
{ø}

)
) = L

and σ1

(
{LA,LB}

)
= ℓ, and Lr stands for σ1

(
{ø}

)
) = L and σ1

(
{LA,LB}

)
= r etc.

The definition of a mixed strategy is standard:

Definition 1 (Mixed strategy). A mixed strategy is a probability distribution over

pure strategies.
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In Example 4, the following is a mixed strategy: 1
4
Lℓ+ 1

4
Lr + 1

4
Rℓ+ 1

4
Rr.

In extensive-form games, it is often more convenient to think about randomization

in terms of behavior strategies:

Definition 2 (Behavior strategy). A behavior strategy is a function that maps

each information set into a probability distribution over the actions available at that

information set, i.e. σi : Ii 7→ σi(Ii) ∈ ∆
(
A(Ii)

)
.

In Example 4, the following is a behavior strategy:

σ1

(
{ø}

)
=

2

3
L+

1

3
R and σ1

(
{LA,LB}

)
=

1

2
ℓ+

1

2
r.

Mixed and behavior strategies are equivalent in games of perfect recall.

1.1 Weak perfect Bayesian equilibria in mixed/behavior strategies

Let us find a weak perfect Bayesian equilibrium in mixed strategies in the game

of Example 4. Suppose player 1 believes that she is at history LA with probability µ

and at history LB with probability 1−µ. We will construct an equilibrium, in which

player 1 randomizes between ℓ and r according to pℓ+(1−p)r. The expected payoffs

of player 1 are:

ℓ : 0µ+ 3(1− µ) = 3(1− µ),

r : 3µ+ 0(1− µ) = 3µ.

By indifference, we have 3(1− µ∗) = 3µ∗, hence µ∗ = 1
2
. Suppose the information

set {LA,LB} is reached with positive probability. Bayes’ rule then implies that player

2 plays 1
2
A+ 1

2
B. Player 2 therefore has to be indifferent between A and B:

ℓ : 0p+ 6(1− p) = 6(1− p),

r : 6p+ 0(1− p) = 6p.

By indifference we have 6(1− p∗) = 6p∗, hence p∗ = 1
2
.

If player 1 plays L, here expected payoff is 3µ∗ = 1.5, which is higher than

the payoff from R, hence player 1 plays L and the information set {LA,LB} is
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indeed achived with positive probability, this the following is a weak perfect Bayesian

equilibrium:

(
σ1

(
{ø}

)
= L, σ1

(
{LA,LB}

)
=

1

2
ℓ+

1

2
r, σ2

(
{L}

)
=

1

2
A+

1

2
B; µ∗ =

1

2

)
.

Example 5. Consider the following extensive-form game:

Entrant

(3, 2)

Y

(1, 1)

F

P

(4, 2)

Y

(0, 3)

F

U

( 32 , 4)

A

Incumbent

Let us determine the weak perfect Bayesian equilibria of the game in Example 5.

Suppose the incumbent believes that she is at history P with probability µ and at

history U with probability 1 − µ. The expected payoffs of the incumbent are then

given by:

Y : 2µ+ 2(1− µ) = 2,

F : 1µ+ 3(1− µ) = 3− 2µ.

It is optimal to choose Y whenever µ ≥ 1
2
, and vice versa. Iff µ = 1

2
, the incumbent

is indifferent between Y and F . We consider three cases.

Case 1: the incumbent plays Y , hence µ∗ ≥ 1
2
. In this case, the entrant will play

U and the information set {P,U} will be reached with probability 1. Bayes’ rule then

implies µ∗ = 0, which is a contradiction, hence there is no such weak perfect Bayesian

equilibrium.

Case 2: the incumbent plays F , hence µ∗ ≤ 1
2
. In this case, the entrant will

play A and the information set set {P,U} will be reached with probability 0, hence(
(A,F ), µ∗ ∈ [0, 1

2
]
)
are weak perfect Bayesian equilibria.

Case 3: the incumbent randomizes according to pY + (1 − p)F , hence µ∗ = 1
2
.
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The expected utilities of the entrant are given by:

P : 3p+ 1(1− p) = 2p+ 1,

U : 4p+ 0(1− p) = 4p,

A :
3

2
.

We distinguish two subcases:

• Case 3.1: the information set {P,U} is reached with positive probabilty. Bayes’

rule then implies that the entrant plays qP + qU + (1 − 2q)A for some q > 0,

hence the entrant has to be indifferent between P and U , which is guaranteed

whenever 2p∗ + 1 = 4p∗ or p∗ = 1
2
with the resulting payoff of 2, which exceeds

the payoff from A, implying that q∗ = 1
2
.
(
(1
2
P + 1

2
U, 1

2
Y + 1

2
F );µ∗ = 1

2

)
is a

weak perfect Bayesian equilibrium.

• Case 3.2: the information set {P,U} is reached with probability 0. The entrant

then plays A. It is optimal for the entrant to play A whenever 3
2
≥ 2p∗ + 1 and

3
2
≥ 8p∗, which is equivalent to p∗ ≤ 1

4
. Hence for every p∗ ∈ [0, 1

4
] the following

is a weak perfect Bayesian equilibrium:
(
(L, p∗Y + (1− p∗)F );µ∗ = 1

2

)
.
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2 Signaling games

Example 6. Consider the following signaling game:

Nature
Entrant

(0, 1)

F

(2, 0)

Y

P

(5, 0)

Y

(3, 1)

F

U

Weak (with prob = 1
2 )

Entrant

(2,−1)

F

(4, 2)

Y

P

(5, 2)

Y

(3,−1)

F

U

Strong (with prob = 1
2 )

Incumbent

Incumbent

The formal defintion of the game in Example 6 is as follows:

Definition 3. The signaling game in Example 6 consists of the following:

1. Players: N = {Entrant, Incumbent}.

2. Histories: H = {ø, S,W, SP, SPY, SPF, SU, SUY, SUF,WP,WPY,WPF,WU,WUY,WUF}.

Terminal histories: Z = {SPY, SPF, SUY, SUF,WPY,WPF,WUY,WUF}.

3. Player function: P : H \ Z 7→ N ∪ {Nature}.

P(ø) = Nature,

P(S) = P(W ) = Entrant,

P(SP ) = P(SU) = P(WP ) = P(WU) = Incumbent.

4. Exogenous uncertainty: for every h such that P(h) = Nature, we need to specify

f(·|h) ∈ ∆
(
A(h)

)
. Here we have f(S|ø) = f(W |ø) = 1

2
.
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5. Collections of information sets for each player: IEntrant =
{
{S}, {W}

}
and

IIncumbent =
{
{SU,WU}, {SP,WP}

}
.

6. Payoff functions ui : Z → R, which map terminal histories to payoff for each

player i ∈ N (see the game tree for the payoffs).

2.1 Separating equilibria

In a separating equilibrium, different types take different actions. Observe that

the weak type will never play P , hence we are looking for a separating equilibrium, in

which the weak type plays U and the strong type plays P . Since both information sets

are reached with positive probabilty, the beliefs at both information sets are derived

via Bayes’ rule: µ∗(Strong|P ) = µ∗(Weak|U) = 1. If the incumbent observes P , then

her optimal response is Y . If the incumbent observes U , then her optimal response

is F . The entrant has no profitable deviations: the weak type never plays P ; if the

strong type deviates to U , the incumbent will play F in response, and the game will

end up at SUF with the payoff of 3 for the strong type as opposed to the payoff of 4

from playing P . Hence the following is a weak perfect Bayesian equilibrium:

(
σE(W ) = U, σE(S) = P, σI

(
{SU,WU}

)
= F, σI

(
{SP,WP}

)
= Y ; µ∗(Strong|P ) = µ∗(Weak|U) = 1

)

2.2 Pooling equilibria

In a pooling equilibrium, all types take the same action. Since the weak type never

plays P , we are looking for pooling equilibria, in which both types play U . Since both

types play U , the information set {SU,WU} is reached with positive probability,

and the beliefs at this information set are derived via Bayes’ rule: µ∗(Strong|U) =

µ∗(Weak|U) = 1
2
. The expected payoffs of the incumbent at {SU,WU} are

Y : 2
1

2
+ 0

1

2
= 1,

F : −1
1

2
+

1

2
1 = 0.

The incumbent will therefore choose Y . The entrant has no profitable deviations: the

weak never plays P , and the strong type gets 5 at SUY , which is the highest possible

payoff for the entrant in this game.

It remains to determine the behavior and the beliefs of the incumbent at the

information set {SP,WP}. Let µ∗ ≡ µ∗(Strong|P ), the expected payoffs of the
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incumbent are:

Y : 2µ∗ + 0(1− µ∗) = 2µ∗,

F : −1µ∗ +
1

2
(1− µ∗) = 1− 2µ∗.

It is optimal for the incumbent to choose Y for µ∗ ∈ [1
4
, 1] and vice versa. Thus we

get two kinds of pooling equilibria:

(
σE(W ) = σE(S) = U, σI

(
{SU,WU}

)
= Y, σI

(
{SP,WP}

)
= Y ; µ∗(Strong|U) =

1

2
, µ∗(Strong|P ) ∈ [

1

4
, 1]

)
,(

σE(W ) = σE(S) = U, σI

(
{SU,WU}

)
= Y, σI

(
{SP,WP}

)
= F ; µ∗(Strong|U) =

1

2
, µ∗(Strong|P ) ∈ [0,

1

4
]

)
.

2.3 Semi-separating equilibria

We will construct a semi-separating equilibrium, in which the weak type plays U

(note that the weak type will never play P , and hence cannot mix) and the strong

plays pP +(1− p)U for some 0 < p < 1. The beliefs of the incumbent are as follows:

µ∗(Strong|P ) = 1

µ∗(Strong|U) =
prob(U |Strong)prob(Strong)

prob(U |Strong)prob(Strong) + prob(U |Weak)prob(Weak)

=
(1− p)12

(1− p)12 + 11
2

=
1− p

2− p
.

We therefore have µ∗(Weak|U) = 1− 1−p
2−p

= 1
2−p

.

Let’s consider the actions of the incumebent. If the incumbent observes P , then

the incumbent will believe that the entrant’s type is Strong, and will choose Y .

Suppose that then incumbent plays qY + (1 − q)F after observing U . The entrant

mixes between P and U , and therefore has to be indifferent between P and U :

P : 4,

U : 5q + 3(1− q) = 2q + 3.

From indifference, we get q∗ = 1
2
, hence the incumbent has to be indifferent between
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Y and F :

Y :
1− p

2− p
2 +

1

2− p
0 =

2− 2p

2− p
,

F :
1− p

2− p
(−1) +

1

2− p
1 =

p

2− p
.

From indifference, we have p∗ = 2
3
, hence µ∗(Strong|U) = 1−p∗

2−p∗
= 1−2/3

2−2/3
= 1

4
.

We have constructed the following weak perfect Bayesian equilibrium:

(
σE(W ) = U, σE(S) =

2

3
P +

1

3
U, σI

(
{SU,WU}

)
=

1

2
Y +

1

2
F, σI

(
{SP,WP}

)
= Y ;

µ∗(Strong|P ) = 1, µ∗(Strong|U) =
1

4

)
.
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