Game Theory, Spring 2024
 Problem Set \# 1

Daniil Larionov

Due Feb 21 at 5:15 PM

Exercise 1

Consider the following Bayesian game:

θ_{1}^{1}	T	L	M	R
		3, 2	3,0	3,3
		6,6	0,0	0,9
θ_{1}^{2}		L	M	R
	T	3, 2	3, 3	3, 0
	B	6,6	0,9	0,0

Player 1 has complete information about the payoffs, and Player 2 has incomplete information about the payoffs. Suppose that the types of Player 1 are equally likely. Find all the Bayesian Nash equilibria of this game (in pure and mixed strategies).

Exercise 2

Consider the following Bayesian game:

θ_{2}^{1}			θ_{2}^{2}		
	L	R		L	R
T	5,5	1,7	T	5,3	1,1
B	7,1	3, 3	B	1,1	3,5

Player 2 has complete information about the payoffs, and Player 1 has incomplete information about the payoffs. Suppose that the types of Player 2 are equally likely. Find all the Bayesian Nash equilibria of this game (in pure and mixed strategies).

Exercise 3

Consider the following strategic situation. Player 2 can be strong (with probability α) or weak (with probability $1-\alpha$). Player 1 does not know whether player 2 is strong or weak. Player 2 has complete information about her own strength. Each player can fight or yield. A player has the payoff of 0 if she yields, and has the payoff of 2 if she fights and the other player yields. If both players fight and player 2 is strong, then player 1 obtains the payoff of -2 and player 2 obtains the payoff of 2 . If both players fight and player 2 is weak, then player 1 obtains the payoff of 2 and player 2 obtains the payoff of -2 . Formally define this strategic situation as a Bayesian game and find all the Bayesian Nash equilibria of this game (in pure and mixed strategies) for different values of $\alpha \in(0,1)$.

