Game Theory, Spring 2024

Problem Set # 1

Daniil Larionov

Due Feb 21 at 5:15 PM

Exercise 1

Consider the following Bayesian game:

		L	Μ	R
θ_1^1	Т	3, 2	3, 0	3,3
	В	6, 6	0,0	0,9
		L	М	R
	Т	L 3,2	M 3,3	R 3,0
θ_1^2	T B	L 3,2 6,6	M 3,3 0,9	R 3,0 0,0

Player 1 has complete information about the payoffs, and Player 2 has incomplete information about the payoffs. Suppose that the types of Player 1 are equally likely. Find all the Bayesian Nash equilibria of this game (in pure *and* mixed strategies).

Exercise 2

Consider the following Bayesian game:

$ heta_2^1$				$ heta_2^2$			
	L	R			L	R	
Т	5, 5	1, 7		Т	5,3	1, 1	
В	7, 1	3,3		В	1, 1	3, 5	

Player 2 has complete information about the payoffs, and Player 1 has incomplete information about the payoffs. Suppose that the types of Player 2 are equally likely. Find all the Bayesian Nash equilibria of this game (in pure *and* mixed strategies).

Exercise 3

Consider the following strategic situation. Player 2 can be *strong* (with probability α) or *weak* (with probability $1-\alpha$). Player 1 does not know whether player 2 is strong or weak. Player 2 has complete information about her own strength. Each player can *fight* or *yield*. A player has the payoff of 0 if she yields, and has the payoff of 2 if she fights and the other player yields. If both players fight and player 2 is strong, then player 1 obtains the payoff of -2 and player 2 obtains the payoff of 2. If both players fight and player 2 is weak, then player 1 obtains the payoff of 2 and player 2 obtains the payoff of -2. Formally define this strategic situation as a Bayesian game and find all the Bayesian Nash equilibria of this game (in pure *and* mixed strategies) for different values of $\alpha \in (0, 1)$.