Game Theory, Spring 2024 Problem Set # 2

Daniil Larionov

Due Mar 6 at 5:15 PM

Exercise 1

Compute expected equilibrium payoffs of both firms in the Cournot duopoly with incomplete information discussed in the lecture.

Exercise 2

Two firms compete in quantities. The inverse demand function is $P(q_1, q_2) = \max\{\alpha - q_1 - q_2, 0\}$, where q_1 and q_2 are quantities set by Firm 1 and Firm 2 respectively, and α is a parameter that determines the demand conditions. Demand can be *high* ($\alpha = \alpha_H$) with probability π_H , or *low* ($\alpha = \alpha_L$) with probability π_L . Naturally, $\alpha_H > \alpha_L > 0$. Firm 1 knows the demand conditions (i.e. the value of α) but Firm 2 does not. Both firms have *zero* marginal costs.

- 1. Formally define this strategic situation as a Bayesian game.
- 2. Find an interior Bayesian Nash equilibrium in pure strategies and derive conditions on the parameter values that ensure its existence.
- 3. Compute expected equilibrium payoffs of both firms.

Exercise 3

Two firms supply differentiated products and compete in prices. The demand for Firm *i*'s product is given by $D_i(p_i, p_{-i}) = \max\{\alpha - p_i + p_{-i}, 0\}$, where p_i and p_{-i} are prices set by Firm *i* and Firm -i respectively, and $\alpha > 0$ is known by both firms. Each firm's marginal cost can be low $(c_L, \text{ with probability } \pi_L)$ or high $(c_H, \text{ with probability } \pi_H)$, independently of the other firm. A firm knows its own marginal cost, but does not know the marginal cost of its competitor.

- 1. Formally define this strategic situation as a Bayesian game.
- 2. Find a symmetric interior Bayesian Nash equilibrium in pure strategies and derive conditions on the parameter values that ensure its existence.
- 3. Compute expected equilibrium payoffs of both firms.

Exercise 4

Two firms supply non-differentiated products and compete in prices. The demand for Firm i's product is given by:

$$D_{i}(p_{i}, p_{-i}) = \begin{cases} 1 & \text{if } p_{i} < p_{-i} \text{ and } p_{i} < v, \\ \frac{1}{2} & \text{if } p_{i} = p_{-i} < v, \\ 0 & \text{otherwise,} \end{cases}$$

where p_i and p_{-i} are prices set by Firm *i* and Firm -i respectively, and *v* is the consumers' willingness-to-pay. Each firm's marginal cost can be low (c_L , with probability π_L) or high (c_H , with probability π_H). A firm knows its own marginal cost, but does not know the marginal cost of its competitor. We now assume that $c_H > v > c_L$.

- 1. Formally define this strategic situation as a Bayesian game.
- 2. Show that there is no symmetric Bayesian Nash equilibrium in pure strategies.
- 3. Find a symmetric Bayesian Nash equilibrium in mixed strategies (We will cover the material on mixed strategies in the beginning of Lecture #3).