Game Theory, Spring 2024 Problem Set \# 3

Daniil Larionov

Due Mar 20 at 5:15 PM

Exercise 1

1. Complete the proof of Proposition 1 from Lecture \#4.
2. For the second-price sealed-bid auction considered in Lecture \#4 find another Bayesian Nash equilibirum.

Exercise 2

Suppose $I \geq 2$ bidders participate in a second-price sealed-bid auction with a minimum bid r. Bidders can choose to not participate or place a bid above $r>0$, i.e. the action space of each bidder is $\{\emptyset\} \cup[r,+\infty)$, where \emptyset denotes the non-participation action. If several bidders participate, then the highest bidder gets the object and pays the second-highest bid, and everybody else pays nothing. Ties are broken uniformly at random. If only one bidder participates, then this bidder wins and pays r. Nonparticipating bidders pay nothing. Bidder i assigns value V_{i} to the object. V_{i} is distributed on $[0,1]$ according to F, independently and identically across bidders. F has a continuous density f and full support. Bidder i knows her own value, but does not know the values of her competitors.

1. Formally define this auction as a Bayesian game.
2. Show that there is a Bayesian Nash equilibrium in dominant strategies, in which
each bidder plays β given by:

$$
\beta\left(v_{i}\right)= \begin{cases}v_{i} & \text { if } v_{i} \geq r \\ \emptyset & \text { otherwise }\end{cases}
$$

3. Compute expected revenue (as a function of r) achieved in this equilibrium.
4. Suppose $F(x)=x$ (i.e. V_{i} is uniform on $[0,1]$ for all i), find the revenuemaximizing minimum bid and compute optimal revenue.

Exercise 3

Suppose $I \geq 2$ bidders participate in a glum-loser auction. The highest bidder gets the object and pays nothing, everybody else pays their own bid. Ties are broken uniformly at random. Bidder i assigns value V_{i} to the object. V_{i} is distributed on $[0,1)$ according to F, independently and identically across bidders. F has a continuous density f and full support. Bidder i knows her own value, but does not know the values of her competitors.

1. Formally define this auction as a Bayesian game.
2. Find a symmetric Bayesian Nash equilibrium in strictly increasing strategies.
3. Compute expected revenue achieved in this equilibrium (Hint: define revenue as $\left.R^{*} \equiv \sum_{i=1}^{I} \beta\left(V_{i}\right)-\max \left\{\beta\left(V_{1}\right), \ldots, \beta\left(V_{I}\right)\right\}\right)$.
4. Suppose $F(x)=x$ (i.e. V_{i} is uniform on $[0,1)$ for all i), evaluate expected revenue in this case.

Exercise 4

Suppose $I=2$ bidders participate in a first-price sealed-bid auction with common values. The highest bidder gets the object and pays her own bid, everybody else pays nothing. Ties are broken uniformly at random. Each bidder gets a signal S_{i}, which is uniformly distributed on $[0,1]$, independently and identically across bidders. Bidder i knows her own signal realization, but does not know the signal realization of her competitor. Bidder i 's value for the object is equal to the sum of all signals, i.e. $V_{i}=\sum_{j=1}^{I} S_{j}$.

1. Formally define this auction as a Bayesian game.
2. Suppose β is strictly increasing and continuosly differentiable, and $\beta(0)=0$. Compute the expected utility of bidder i who chooses to bid b_{i} and whose signal realization is s_{i} (Hint: conditional on winning, bidder i values the object at $\left.\mathbb{E}\left[V_{i} \mid b_{i} \geq \beta\left(S_{-i}\right), S_{i}=s_{i}\right]\right)$.
3. Find a symmetric Bayesian Nash equilibrium in strictly increasing strategies.
4. Compute expected revenue achieved in this equilibrium.
